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PEEFACE BY PEOFESSOE GIBBS

Since the printing of a short pamphlet on the Elements of

Vector Analysis in the years 1881-84,— never published, but

somewhat widely circulated among those who were known to

be interested in the subject,— the desire has been expressed

in more than one quarter, that the substance of that trea-

tise, perhaps in fuller form, should be made accessible to

the public.

As, however, the years passed without my finding the

leisure to meet this want, which seemed a real one, I was

very glad to have one of the hearers of my course on Vector

Analysis in the year 1899-1900 imdertake the preparation of

a text-book on the subject.

I have not desired that Dr. Wilson should aim simply

at the reproduction of my lectures, but rather that he should

use his own judgment in all respects for the production of a

text-book in which the subject should be so illustrated by an

adequate number of examples as to meet the wants of stu-

dents of geometry and physics.

J. WILLARD GIBBS.

Yale University, September, 1901.





GENERAL PREFACE

When I undertook to adapt the lectures of Professor Gibbs

on Vector Analysis for publication in the Yale Bicenten-

nial Series, Professor Gibbs himself was already so fully-

engaged upon his work to appear in the same series, Elementary

Principles in Statistical Mechanics, that it was understood no

material assistance in the composition of this book could be

expected from him. For this reason he wished me to feel

entirely free to use my own discretion alike in the selection

of the topics to be treated and in the mode of treatment.

It has been my endeavor to use the freedom thus granted

only in so far as was necessary for presenting his method in

text-book form.

By far the greater part of the material used in the follow-

ing pages has been taken from the course of lectures on

Vector Analysis delivered annually at the University by

Professor Gibbs. Some use, however, has been made of the

chapters on Vector Analysis in Mr. Oliver Heaviside's Elec-

tromagnetic Theory (Electrician Series, 1893) and in Professor

Fdppl's lectures on Die Maxwell'sche Theorie der Electricitdt

(Teubner, 1894). My previous study of Quaternions has

also been of great assistance.

The material thus obtained has been arranged in the way

which seems best suited to easy mastery of the subject.

Those Arts, which it seemed best to incorporate in the

text but which for various reasons may well be omitted at

the first reading have been marked with an asterisk (*). Nu-

merous illustrative examples have been drawn from geometry,

mechanics, and physics. Indeed, a large part of the text has

to do with applications of the method. These applications

have not been set apart in chapters by themselves, but have
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been distributed throughout the body of the book as fast as

the analysis has been developed sufficiently for their adequate

treatment. It is hoped that by this means the reader may be

better enabled to make practical use of the book. Great care

has been taken in avoiding the introduction of unnecessaiy

ideas, and in so illustrating each idea that is introduced as

to make its necessity evident and its meaning easy to grasp.

Thus the book is not intended as a complete exposition of

the theory of Vector Analysis, but as a text-book from which

so much of the subject as may be required for practical appli-

cations may be learned. Hence a summary, including a list

of the more" important formulae, and a number of exercises,

have been placed at the end of each chapter, and many less

essential points in the text have been indicated rather than

fully worked out, in the hope that the reader will supply the

details. The summary may be found useful in reviews and

for reference.

The subject of Vector Analysis naturally divides itself into

three distinct parts. First, that which concerns addition and

the scalar and vector products of vectors. Second, that which

concerns the differential and integral calculus in its relations

to scalar and vector functions. Third, that which contains

the theory of the linear vector function. The first part is

a necessary introduction to both other parts. The second

and third are mutually independent. Either may be taken

up first. For practical purposes in mathematical physics the

second must be regarded as more elementary than the third.

But a student not primarily interested in physics would nat-

urally pass from the first part to the third, which he would
probably find more attractive and easy than the second.

Following this division of the subject, the main body of

the book is divided into six chapters of which two deal with
each of the three parts in the order named. Chapters I. and
II. treat of addition, subtraction, scalar multiplication, and
the scalar and vector products of vectors. The exposition

has been made quite elementary. It can readily be under-
stood by and is especially suited for such readers as have a
knowledge of only the elements of Trigonometry and Ana-
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lytic Geometry. Those -who are well versed in Quaternions

or allied subjects may perhaps need to read only the sum-

maries. Chapters III. and IV. contain the treatment of

those topics in Vector Analysis which, though of less value

to the students of pure mathematics, are of the utmost impor-

tance to students of physics. Chapters V. and VI. deal with

the linear vector function. To students of physics the linear

vector function is of particular importance in the mathemati-

cal treatment of phenomena connected with non-isotropic

media ; and to the student of pure mathematics this part of

the book will probably be the most interesting of all, owing

to the fact that it leads to Multiple Algebra or the Theory

of Matrices. A concluding chapter, VII., which contains the

development of certain higher parts of the theory, a number
of applications, and a short sketch of imaginary or complex

vectors, has been added.

In the treatment of the integral calculus. Chapter IV.,

questions of mathematical rigor arise. Although modern
theorists are devoting much time and thought to rigor, and

although they will doubtless criticise this portion of the book

adversely, it has been deemed best to give but little attention

to the discussion of this subject. And the more so for the

reason that whatever system of notation be employed ques-

tions of rigor are indissolubly associated with the calculus

and occasion no new difficulty to the student of Vector

Analysis, who must first learn what the facts are and may
postpone until later the detailed consideration of the restric-

tions that are put upon those facts.

Notwithstanding the efforts which have been made during

more than half a century to introduce Quaternions into

physics the fact remains that they have not found wide favor.

On the other hand there has been a growing tendency espe-

cially in the last decade toward the adoption of some form of

Vector Analysis. The works of Heaviside and Foppl re-

ferred to before may be cited in evidence. As yet however

no system of Vector Analysis which makes any claim to

completeness has been published. In fact Heaviside says

:

"I am in hopes that the chapter which I now finish may
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serve as a stopgap till regular vectorial treatises come to be

written suitable for physicists, based upon the vectorial treat-

ment of vectors " (Electromagnetic Theory, Vol. I., p. 305).

Elsewhere in the same chapter Heaviside has set forth the

claims of vector analysis as against Quaternions, and others

have expressed similar views.

The keynote, then, to any system of vector analysis must

be its practical utiUty. This, I feel confident, was Professor

Gibbs's point of view in building up his system. He uses it

entirely in his courses on Electricity and Magnetism and on

Electromagnetic Theory of Light. In writing this book I

have tried to present the subject from this practical stand-

point, and keep clearly before the reader's mind the ques-

tions: What combinations or functions of vectors occur in

physics and geometry ? And how may these be represented

symbolically in the way best suited to facile analytic manip-

ulation ? The treatment of these questions in modern books

on physics has been too much confined to the addition and

subtraction of vectors. This is scarcely enough. It has

been the aim here to give also an exposition of scalar and

vector products, of the operator y, of divergence and curl

which have gained such universal recognition since the ap-

pearance of Maxwell's Treatise on Electricity and Magnetism,

of slope, potential, linear vector function, etc., such as shall

be adequate for the needs of students of physics at the

present day and adapted to them.

It has been asserted by some that Quaternions, Vector

Analysis, and all such algebras are of little value for investi-

gating questions in mathematical physics. Whether this

assertion shall prove true or not, one may still maintain that

vectors are to mathematical physics what invariants are to

geometry. As every geometer must be thoroughly conver-

sant with the ideas of invariants, so every student of physics

should be able to thinh in terms of vectors. And there is

no way in which he, especially at the beginning of his sci-

entific studies, can come to so true an appreciation of the

importance of vectors and of the ideas connected with them

as by working in Vector Analysis and dealing directly with
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the vectors themselves. To those that hold these views the

success of Professor Foppl's Vbrlesungen uber Technische

Mechanik (four volumes, Teubner, 1897-1900, already in a

second edition), in which the theory of mechanics is devel-

oped by means of a vector analysis, can be but an encour-

aging sign.

I take pleasure in thanking my colleagues, Dr. M. B. Porter

and Prof. H. A. Bumstead, for assisting me with the manu-

script. The good services of the latter have been particularly

valuable in arranging Chapters III. and IV. in their present

form and in suggesting many of the illustrations used in the

work. I am also under obligations to my father, Mr. Edwin
H. Wilson, for help in connection both with the proofs and

the manuscript. Finally, I wish to express my deep indebt-

edness to Professor Gibbs. For although he has been so

preoccupied as to be unable to read either manuscript or

proof, he has always been ready to talk matters over with

me, and it is he who has furnished me with inspiration suf-

ficient to carry through the work.

EDWIN BIDWELL WILSON.

Yale Univbesitt, October, 1901.
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VECTOR ANALYSIS

CHAPTER I

ADDITION AND SCALAB MUIiTIPLICATION

1.] In mathematics and especially in physics two very

different kinds of quantity present themselves. Consider, for

example, mass, time, density, temperature, force, displacement

of a point, velocity, and acceleration. Of these quantities

some can be represented adequately by a single number—
temperature, by degrees on a thermometric scale ; time, by

years, days, or seconds ; mass and density, by numerical val-

ues which are wholly determined when the unit of the scale

is fixed. On the other hand the remaining quantities are not

capable of such representation. Force to be sure is said to be

of so many pounds or grams weight; velocity, of so many

feet or centimeters per second. But in addition to this each

of them must be considered as having direction as well as

magnitude. A force points North, South, East, West, up,

down, or in some intermediate direction. The same is true

of displacement, velocity, and acceleration. No scale of num-

bers can represent them adequately. It can represent only

their magnitude, not their direction.

2.] Definition : A vector is a quantity which is considered

as possessing direction as well as magnitude.

Definition : A scalar is a quantity which is considered as pos-

sessing magnitude but no direction.
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The positive and negative numbers of ordinary/ algebra are the

typical scalars. For this reason the ordinary algebra is called

scalar algebra when necessary to distinguish it from the vector

algebra or analysis which is the subject of this book.

The typical vector is the displacement of translation in space.

Consider first a point P (Fig. 1). Let P be displaced in a

straight line and take a new position F'.

This change of position is represented by the

line PF'. The magnitude of the displace-

ment is the length of PF'; the direction of

it is the direction of the line FF' from F to

F'. Next consider a displacement not of one,

but of all the points in space. Let all the

points move in straight lines in the same direction and for the

same distance D. This is equivalent to shifting space as a

rigid body in that direction through the distance D without

rotation. Such a displacement is called a translation. It

possesses direction and magnitude. When space undergoes

a translation T, each point of space undergoes a displacement

equal to T in magnitude and direction; and conversely if

the displacement FF' which any one particular point F suf-

fers in the translation T is known, then that of any other

point Q is also known: for Q Q' must be equal and parallel

toPP'.

The translation T is represented geometrically or graphically

by an arrow T (Fig. 1) of which the magnitude and direction

are equal to those of the translation. The absolute position

of this arrow in space is entirely immaterial. Technically the

an-ow is called a stroke. Its tail or initial point is its origin

;

and its head or final point, its terminus. In the figure the

origin is designated by and the terminus by T. This geo-

metric quantity, a stroke, is used as the mathematical symbol

for all vectors, just as the ordinary positive and negative num-
bers are used as the symbols for all scalars.
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* 3.] As examples of scalar quantities mass, time, den-

sity, and temperature have been mentioned. Others are dis-

tance, volume, moment of inertia, work, etc. Magnitude,

however, is by no means the sole property of these quantities.

Each implies something besides magnitude. Each has its

own distinguishing characteristics, as an example of which

its dimensions in the sense well known to physicists may
be cited. A distance 3, a time 3, a work 3, etc., are very

different. The magnitude 3 is, however, a property common

to them all — perhaps the only one. Of all scalar quanti-

tities pure number is the simplest. It implies nothing but

magnitude. It is the scalar par excellence and consequently

it is used as the mathematical symbol for all scalars.

As examples of vector quantities force, displacement, velo-

city, and acceleration have been given. Each of these has

other characteristics than those which belong to a vector pure

and simple. The concept of vector involves two ideas and

two alone— magnitude of the vector and direction of the

vector. But force is more complicated. When it is applied

to a rigid body the line in which it acts must be taken into

consideration; magnitude and direction alone do not suf-

fice. And in case it is applied to a non-rigid body the foint

of application of the force is as important as the magnitude or

direction. Such is frequently true for vector quantities other

than force. Moreover the question of dimensions is present

as in the case of scalar quantities. The mathematical vector,

the stroke, which is the primary object of consideration in

this book, abstracts fiom all directed quantities their magni-

tude and direction and nothing but these ; just as the mathe-

matical scalar, pure number, abstracts the magnitude ?ind

that alone. Hence one must be on his guard lest from

analogy he attribute some properties to the mathematical

vector which do not belong to it ; and he must be even more

careful lest he obtain erroneous results by considering the
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vector quantities of physics as possessing no properties other

than those of the mathematical vector. For example it would

never do to consider force and its effects as unaltered by

shifting it parallel to itself. This warning may not be

necessary, yet it may possibly save some confusion.

4.] Inasmuch as, taken in its entirety, a vector or stroke

is but a single concept, it may appropriately be designated by

one letter. Owing however to the fundamental difference

between scalars and vectors, it is necessary to distinguish

carefully the one from the other. Sometimes, as in mathe-

matical physics, the distinction is furnished by the physical

interpretation. Thus if n be the index of refraction it

must be scalar ; m, the mass, and t., the timCj are also

scalars ; but /, the force, and a, the acceleration, are

vectors. When, however, the letters are regarded merely

as symbols with no particular physical significance some

typographical difference must be relied upon to distinguish

vectors from scalars. Hence in this book Clarendon type is

used for setting up vectors and ordinary type for scalars.

This permits the xise of the same letter differently printed

to represent the vector and its scalar magnitude.^ Thus if

C be the electric current in magnitude and direction, C may
be used to represent the magnitude of that current ; if g be

the vector acceleration due to gravity, g may be the scalar

value of that acceleration ; if v be the velocity of a moving

mass, V may be the magnitude of that velocity. The use of

Clarendons to denote vectors makes it possible to pass from

directed quantities to their scalar magnitudes by a mere
change in the appearance of a letter without any confusing

change in the letter itself.

Definition : Two vectors are said to be equal when they have
the same magnitude and the same direction.

1 This convention, however, is by no means invariably followed. In some
instances it would prove just as undesirable as it is convenient in others. It is

chiefly valuable in the application of vectors to physics.



ADDITION AND SCALAR MULTIPLICATION 5

The equality of two vectors A and B is denoted by tlie

usual sign =. Thus a = B

Evidently a vector or stroke is not altered by shifting it

about parallel to itself in space. Hence any vector A = PP'

(Fig. 1) may be drawn from any assigned point as origin
;

for the segment PP' may be moved parallel to itself until

the point P falls upon the point and P' upon some point T.

Then , .
.

A = PP' = OT = 'S.

In this way all vectors in space may be replaced by directed

segments radiating from one fixed point 0. Equal vectors

in space will of course coincide, when placed with their ter-

mini at the same point 0. Thus (Fig. 1) A = PP', and B = ^ ^
',

both fall upon T = OT.

For the numerical determination of a vector three scalars

are necessary. These may be chosen in a variety of ways.

If r,
(f>,

6 be polar coordinates in space any vector r drawn

with its origin at the origin of cob'rdinates may be represented

by the three scalars r, ^, 6 which determine the terminus of

the vector. , r,, a. a\r ~ [r, <p, 0).

Or M X, y, z be Cartesian coordinates in space a vector r may

be considered as given by the differences of the coordinates x',

y', z' of its terminus and those x, y, z of its origin.

T'^{x' -x,y' -y,z' -z).

If in particular the origin of the vector coincide with the

origin of coHrdinates, the vector will be represented by the

three coordinates of its terminus

T~{x',y',z').

When two vectors are equal the three scalars which repre-

sent them must be equal respectively each to each. Hence

one vector equality implies three scalar equalities.
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Definition : A vector A is said to be equal to zero when its

magnitude A is zero.

Such a vector A is called a null or zero vector and is written

equal to naught in the usual manner. Thus

A = if ^ = 0.

All null vectors are regarded as equal to each other without

any considerations of direction.

In fact a null vector from a geometrical standpoint would

be represented by a linear segment of length zero— that is to

say, by a point. It consequently would have a wholly inde-

terminate direction or, what amounts to the same thing, none at

all. If, however, it be regarded as the limit approached by a

vector of finite length, it might be considered to have that

direction which is the limit approached by the direction of the

finite vector, when the length decreases indefinitely and ap-

proaches zero as a limit. The justification for disregarding

this direction and looking upon all null vectors as equal is

that when they are added (Art. 8) to other vectors no change

occurs and when multiplied (Arts. 27, 31) by other vectors

the product is zero.

5.] In extending to vectors the fundamental operations

-

of algebra and arithmetic, namely, addition, subtraction, and

multiplication, care must be exercised not only to avoid self-

contradictory definitions but also to - lay down useful ones.

Both these ends may be accomplished most naturally and
easily by looking to physics (for in that science vectors con-

tinually present themselves) and by observing how such
quantities are treated there. If then A be a given displace-

ment, force, or velocity, what is two, three, or in general x
times A? What, the negative of A? And if B be another,

what is the sum of A and B ? That is to say, what is the

equivalent of A and B taken together? The obvious answers
to these questions suggest immediately the desired definitions.
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Scalar Multiplication

6.] Definition: A vector is said to be multiplied by a

positive scalar when its magnitude is multiplied by that scalar

and its direction is left unaltered.

Thus if V be a velocity of nine knots East by North, 2^ times

V is a velocity of twenty-one knots with the direction still

East by North. Or if f be the force exerted upon the scale-

pan by a gram weight, 1000 times f is the force exerted by a

kilogram. The direction in both cases is vertically down-

ward.

If A be the vector and x the scalar the product of x and A is

denoted as usual by
X A OT A X.

It is, however, more customary to place the scalar multiplier

before the multiplicand A. This multiplication by a scalar

is called scalar multiplication, and it follows the associative law

X {y A) = (^xy') A = y (x A)

as in ordinary algebra and arithmetic. This statement is im-

mediately obvious when the fact is taken into consideration

that scalar multiplication does not alter direction but merely

multiplies the length.

Definition : A unit vector is one whose magnitude is unity.

Any vector A may be looked upon as the product of a unit

vector a in its direction by the positive scalar A, its magni-

tude.

A — Az, = ^ A.

The unit vector a may similarly be written as the product of

A by IIA or as the quotient of A and A.

a ^ — A = — •

A A
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7.] Definition : The negative sign, — , prefixed to a vector

reverses its direction but leaves its magnitude unchanged.

For example if A be a displacement for two feet to the right,

— A is a displacement for two feet to the left. Again if the

stroke A £ he A, the stroke S A, which is of the same length

as A B but which is in the direction from B to A instead of

from A to B, will be — A. Another illustration of the use

of the negative sign may be taken from Newton's third law

of motion. If A denote an "action," — A wiU denote the

" reaction." The positive sign, + , may be prefixed to a vec-

tor to call particular attention to the fact that the direction

has not been reversed. The two signs + and — when used

in connection with scalar multiplication of vectors follow the

same laws of operation as in ordinary algebra. These are

symbolically

+ + = +; +- = -; - + --; -- = + ;

— (m A) = m (— A).

The interpretation is obvious.

Addition and Subtraction

8.] The addition of two vectors or strokes may be treated
most simply by regarding them as defining translations in

space (Art. 2). Let S be one vector and T the other. Let P
be a point of space (Fig. 2). The trans-

lation^ carries P into P' such that the

line PP' is equal to S in magnitude and
direction. The transformation T will then
carry P' into P"— the line IFW being
parallel to T and equal to it in magnitude.
Consequently the result of S followed by
T is to carry the point P into the point

P". If now Q be any other point in space, S will carry Q
into Q' such that CS' = S and T will then carry Q' into Q"
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such that Q' Q" = T. Thus S followed by T carries Q into Q".

Moreover, the triangle QQ'Q" is equal to PP'P". For

the two sides Q Q' and Q' Q", being equal and parallel to S

and T respectively, must be likewise parallel to FF' and

P'P" respectively which are also parallel to S and T. Hence

the third sides of the triangles must be equal and parallel.

That is

Q Q" is equal and parallel to PP".

As Q is any point in space this is equivalent to saying that

by means of S followed by T aU points of space are displaced

the same amount and in the same direction. This displace-

ment is therefore a translation. Consequently the two

translations S and T are equivalent to a single translation R.

Moreover

if S = PP' and T = P' P", then R = PP".

The stroke R is called the resultant or sum, of the two

strokes S and T to which it is equivalent. This sum is de-

noted in the usual manner by

R = S -I- T.

From analogy with the sum or resultant of two^translations

the following definition for the addition of any two vectors is

laid down.

Definition : The sum or resultant of two vectors is found

by placing the origin of the second upon the terminus of the

first and drawing the vector from the origin of the first to the

terminus of the second.

9.] Theorem. The order in which two vectors S and T are

added does not affect the sum.

S followed by T gives precisely the same result as T followed

by S. For let S carry P into P' (Fig. 3) ; and T, P' into P".

S + T then carries P into P". Suppose now that T carries P
into P'". The line PP'" is equal and parallel to P'P". Con-



10 VECTOR ANALYSIS

sequently the points P, P', P", and P"' lie at the vertices of

a parallelogram. Hence
pw pn is equal and par-

aUel to PP. Hence S

carries P'" into P". T fol-

lowed by S therefore car-

ries P into P" through P',

whereas S followed by T

carries P into P" through

P'". The final result is in

either case the same. This may be designated symbolically

by writing
K = S + T = T + S.

It is to be noticed that S= PP' and T = PP'" are the two sides

of the parallelogram PP'P"P"' which have the point P as

common origin ; and that R = PP" is the diagonal drawn

through P. This leads to another very common way of

stating the definition of the sum of two vectors.

If two vectors be drawn from the same origin and a parallelo-

gram be constructed upon them as sides, their sum will be that

diagonal which passes through their common origin.

This is the well-known " parallelogram law " according to

which the physical vector quantities force, acceleration, veloc-

ity, and angular velocity are compounded. It is important to

note that in case the vectors lie along the same line vector

addition becomes equivalent to algebraic scalar addition. The

lengths of the two vectors to be added are added if the vectors

have the same direction ; but subtracted if they have oppo-

site directions. In either case the sum has the same direction

as that of the greater vector.

10.] After the definition of the sum of two vectors has

been laid down, the sum of several may be found by adding

together the first two, to this sum the third, to this the fourth,

and so on until all the vectors have been combined into a sin-
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gle one. The final result is the same as that obtained by placing

^
' the origin of each succeeding vector upon the terminus of the

preceding one and then drawing at once the vector from

the origin of the first to the terminus of the last. In case

' these two points coincide the vectors form a closed polygon

I* and their sum is zero. Interpreted geometrically this states

that if a number of displacements R, S, T • • are such that the

strokes R, S, T • • form the sides of a closed polygon taken in

order, then the eifect of carrying out the displacements is mil.

Each point of space is brought back to its starting point. In-

terpreted in mechanics it states that if any number of forces

act at a point and if they form the sides of a closed polygon

taken in order, then the resultant force is zero and the point

is in equilibrium under the action of the forces.

The order of sequence of the vectors in a sum is of no con-

sequence. This may be shown by proving that any two adja-

cent vectors may be interchanged without affecting the result.

To show

A-l-B-FC-|-D-l-E = A-|-B-|-D-f-C-l-E.

Let A=OA,-& = AB,C = BC,Ti=GD,-E. = DE.
Then 0^= A -I- B + C -|- D + E.

Let now B C = Ti. Then C B CD is a parallelogram and

consequently C I) = C. Hence

0^=A + B + T) + C-l-E,

which proves the statement. Since any two adjacent vectors

may be interchanged, and since the sum may be arranged in

any order by successive interchanges of adjacent vectors, the

order in which the vectors occur in the sum is immaterial.

11.] Definition : A vector is said to be subtracted when it

is added after reversal of direction. Symbolically,

A - B = A + (- B).

By this means subtraction is reduced to addition and needs
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no special consideration. There is however an interesting and

important way of representing the difference of two vectors

geometricaUy. Let A = 'OA, B = OB (Fig. 4). Complete

the parallelogram of which A and B

are the sides. Then the diagonal

OV = C is the sum A + B of the

two vectors. Next complete the

parallelogram of which A and — B

= OB' are the sides. Then the di-

agonal OB = D will be the sum of

A and the negative of B. But the

segment OB is parallel and equal

to BA. Hence BA may be taken as the difference to the two

vectors A and B. This leads to the following rule : The differ-

ence of two vectors which are drawn from the same origin is

the vector drawn from the terminus of the vector to be sub-

-tracted to the terminus of the vector from which it is sub-

tracted. Thus the two diagonals of the parallelogram, which

is constructed upon A and B as sides, give the sum and dif-

ference of A and B.

12.] In the foregoing paragraphs addition, subtraction, and

scalar multiplication of vectors have been defined and inter-

preted. To make the development of vector algebra mathe-

matically exact and systematic it would now become necessary

to demonstrate that these three fundamental operations follow

the same formal laws as in the ordinary scalar algebra, al-

though from the standpoint of the physical and geometrical

interpretation of vectors this may seem superfluous. These

laws are

I.

II

III,,

III,

IIL

m (nA) = n (m A) = (m n) A,

(A + B) + C = A 4- (B -I- C),

A -1- B = B + A,

(m + n) A = m A + nA,

m (A -I- B) —mA + mB,
- (A + B) = - A - B.
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I<, is the so-called law of association and commutation of

the scalar factors in scalar multiplication.

Ij is the law of association for vectors in vector addition. It

states that in adding vectors parentheses may be inserted at

any points without altering the result.

II is the commutative law of vector addition.

Ilia is the distributive law for scalars in scalar multipli-

cation.

IIIj is the distributive law for vectors in scalar multipli-

cation.

Ille is the distributive law for the negative sign.

The proofs of these laws of operation depend upon those

propositions in elementary geometry which have to deal with

the first properties of the parallelogram and similar triangles.

They will not be given here; but it is suggested that the

reader work them out for the sake of fixing the fundamental

ideas of addition, subtraction, and scalar multiplication more

clearly in mind. The result of the laws may be summed up

in the statement

:

The laws which govern addition, subtraction, and scalar

multiplication of vectors are identical with those governing these

operations in ordinary scalar algebra.

It is precisely this identity of formal laws which justifies

the extension of the use of the familiar signs =, -I-, and —
of arithmetic to the algebra of vectors and it is also this

which ensures the correctness of results obtained by operat-

ing with those signs in the usual manner. One caution only

need be mentioned. Scalars and vectors are entirely different

sorts of quantity. For this reason they can never be equated

to each other— except perhaps in the trivial case where each is

zero. For the same reason they are not to be added together.

So long as this is borne in mind no difficulty need be antici-

pated from dealing with vectors much as if they were scalars.

Thus from equations in which the vectors enter linearly with
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scalar coefficients unknown vectors may be eliminated or

found by solution in the same way and with the same limita-

tions as in ordinary algebra; for the eliminations and solu-

tions depend solely on the scalar coefficients of the equations

and not at all on what the variables represent. If for

instance , ^

then A, B, C, or D may be expressed in terms of the other

three

as D = - 3 (a A + & B + c C).
a

And two vector equations such as

3 A + 4B = E

and 2 A + 3 B = F

yield by the usual processes the solutions

A=3E-4F
and B = 3 F - 2 E.

Components of Vectors

13.] Definition : Vectors are said to be coUinear when

they are parallel to the same line; coplanar, when parallel

to the same plane. Two or more vectors to which no line

can be drawn parallel are said to be non-coUinear. Three or

more vectors to which no plane can be drawn parallel are

said to be non-coplanar. Obviously any two vectors are

coplanar.

Any vector b coUinear with a may be expressed as the

product of a and a positive or negative scalar which is the

ratio of the magnitude of b to that of a. The sign is positive

when b and a have the same direction ; negative, when they

have opposite directions. If then 0-4 = a, the vector r drawn
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from the origin to any point of the line OA produced in

either direction is

r = a; a. (1)

If a; be a variable scalar parameter this equation may there-

fore be regarded as the (vector) equation of all points in the

line OA. Let now B be any point not

upon the line OAov that line produced "

in either direction (Fig. 5).

Let 05 = b. The vector b is surely ,

not of the form x a. Draw through B
-^ig 5

a line parallel to OA and let B be any

point upon it. The vector BB is coUinear with a and is

consequently expressible as a; a. Hence the vector drawn

from to 5 is

OB = 'OB + BB
or r = b + a; a. (2)

This equation may be regarded as the (vector) equation of

all the points in the line which is parallel to a and of which

B is one point.

14.] Any vector r coplanar with two non-collinear vectors

a and b may be resolved into two components parallel to a

and b respectively. This resolution may

be accomplished by constructing the par- /
allelogram (Fig. 6) of which the sides are

parallel to a and b and of which the di-

agonal is r. Of these components one is '
^^

X a ; the other, yh. x and y are respec-
'

tively the scalar ratios (taken with the

proper sign) of the lengths of these components to the lengths

of a and b. Hence
r = a; a + y b (2)'

is a tjrpical form for any vector coplanar with a and b. If

several vectors- rj, Tj, ig • • • may be expressed in this form as
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Ti = a?! a + 2/1 b,

Tg = 332 a + 2^2 ^>

Fg = ajg a + j^3 b,

their sum r is then-

r= ri + r2 + rg + . — V^l ' 2 ' '^S ' ' ' 'J

+ (2/1 + 2/2 + 2/3 + • • •) ^•

This is the well-known theorem that the components of a

sum of vectors are the sums of the components of those

vectors. If the vector r is zero each of its components must

be zero. Consequently the one vector equation r = is

equivalent to the two scalar equations

"^1 "T~ ^2 "t" "^Q "T" • • • •— V

^1 + 2/2 + 2/3 +
0. (3)

15.] Any vector r in space may be resolved into three

components parallel to any three given non-coplanar vectors.

Let the vectors be a, b,

and c. The resolution

may then be accom-

plished by constructing

the parallelopiped (Fig.

7) of which the edges

are parallel to a, b, and

c and of which the- di-

agonal is r. This par-

allelopiped may be
drawn easily by passing

three planes parallel re-

spectively to a and b, b and c, c and a through the origin

of the vector r ; and a similar set of three planes through its

terminus E. -These six planes will then be parallel in pairs

Fig. 7.
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and hence form a parallelopiped. That the intersections of

the planes are lines which are parallel to a, or b, or c is

obvious. The three components of r are x a., y h, and z e

;

where x, y, and z are respectively the scalar ratios (taken with

the proper sign) of the lengths of these components to the

length of a, b, and c. Hence

r = a;a + yb + 2!C (4)

is a typical form for any vector whatsoever in space. Several

vectors r^, rg, Tg . . . may be expressed in this form as

Tj = ajj a + 2/i
b + Si c,

Ta = ajj a + 2/2 ^ + «2!2 c,

Tg = ajg a + 2/3 b + Sg c,

Their sum r is then

r = ri + ij + rg + • • • = (iTi + ajg + ajg H ) a

+ (2/1 + ^2+ ys + '-O^
+ (»i + 22 + »3 H ) c.

If the vector r is zero each of its three components is zero.

Consequently the one vector equation r = is equivalent to

the three scalar equations

«! + OJg + iTg + • • • = V

yi + 2^2 + 2^8 + • • • = ^ r = 0. (5)

zi + z^ + z^+ ... = 0^

Should the vectors all be coplanar with a and b, all the com-

ponents parallel to c vanish. In this case therefore the above

equations reduce to those given before.

16.] If two equal vectors are expressed in terms of the

same three non-coplanar vectors, the corresponding scalar co-

efficients are equal.



18 VECTOR ANALYSIS

Let r = r',

r'= a;' a + y' b + »' c,

Then x = x', y = y', z = z'.

For r - r' = = (ic - a;') a + (y - V'^ !> + (s - »') c

Hence x — x' = Q, y — y' = 0, z — z' = 0.

But this would not be true if a, b, and c were coplanar. In

that case one of the three vectors could be expressed in terms

of the other two as

c = m a + m b.

Then r =xa, + y'b + zc = (x + mz')B,+ (^y + nz)'b,

t' = x'a, + y'h + z'e = Qx' + mz') &+ (y' + n z') b,

r — r' = [(x + m s ) — (a;' + m «')] a,

+ {{y + nz)- (y' + wz')] ^ = 0-

Hence the individual components of r — r' in the directions

a and b (supposed different) are zero.

Hence x + mz = x' + mz'

y + nz = y' + nz'.

But this by no means necessitates x, y, z to be equal respec-

tively to x', y', z'. In a similar manner if a and b were col-

linear it is impossible to infer that their coeiBcients vanish

individually. The theorem may perhaps be stated as follows

:

In case two equal vectors are expressed in terms of one vector,

or two non-coUinear vectors, or three non-coplanar vectors, the

corresponding scalar coefficients are equal. But this is not ne-

cessarily true if the two vectors be collinear ; or the three vectors,

coplanar. This principle will be used in the applications

(Arts. 18 et seq.).

The Three Unit Vectors i, j, k.

17.] In the foregoing paragraphs the method of express-

ing vectors in terms of three given non-coplanar ones has been
explained. The simplest set of three such vectors is the rect-
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angular system familiar in Solid Cartesian Geometry. This

rectangular system may however be either of two very distinct

types. In one case (Fig. 8, first part) the .2^xis ^ lies upon

that side of the X T- plane on which rotation through a right

angle" from the X-axis to the F-axis appears counterclockwise

or positive according to the convention adopted in Trigonome-

try. This relation may be stated in another form. If the X-

axis be directed to the right and the F-axis vertically, the

^axis will be directed toward the observer. Or if the X-

axis point toward the observer and the F-axis to the right,

the -Z'-axis will point upward. Still another method of state-

Z Z

Right-handed
Fig. 8.

Left-handed

ment is common in mathematical physics and engineering. If

a right-handed screw be turned from the X-axis to the F-

axis it will advance along the {positive) Z-axis. Such a sys-

tem of axes is called right-handed, positive, or counterclock-

wise.^ It is easy to see that the F-axis lies upon that side of

the .^X-plane on which rotation from the .^-axis to the X-

axis is counterclockwise ; and the X-axis, upon that side of

> By the X-, Y-, or Praxis the positive half of that axis is meant. The X Y-

plane means the plane which contains the X- and Y-axis, i. e., the plane 2 = 0.

^ A convenient right-handed system and one which is always available consists

of the tbnmb, first finger, and second finger of the right hand. If the thumb and

first finger be stretched ont from the palm perpendicular to each other, and if the

second finger be bent over toward the palm at right angles to first finger, a right-

handed system is formed by the fingers taken in the order thumb, first finger,

second finger.
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the Z^-plane on which rotation from the F-axis to the Z-

axis is counterclockwise. Thus it appears that the relation

between the three axes is perfectly symmetrical so long as the

same cyclic order XYZXY is observed. If a right-handed

screw is turned from one axis toward the next it advances

along the third.

In the other case (Fig. 8, second part) the .^'-axis lies upon

that side of the JTF-plane on which rotation through a right

angle from the X-axis to the F-axis appears clockwise or neg-

ative. The Z-axis then lies upon that side of the ZJC-pleme

on which rotation from the ^-axis to the X-axis appears

clockwise and a similar statement may be made concerning

the JT-axis in its relation to the F.2'-plane. In this case, too,

the relation between the three axes is symmetrical so long

as the same cyclic order JTYZXY is preserved but it is just

the opposite of that in the former case. If a fe/i!-handed screw

is turned from one axis toward the next it advances along

the third. Hence this system is called, left-handed, negative,

or clockwise.^

The two systems are not superposable. They are sym-

metric. One is the image of the other as seen in a

mirror. If the X- and F-axes of the two different systems be

superimposed, the ^-axes will point in opposite directions.

Thus one system may be obtained from the other by reversing

the direction of one of the axes. A little thought will show
that if two of the axes be reversed in direction the system will

not be altered, but if all three be so reversed it will be.

Which of the two systems be used, mattera little. But in-

asmuch as the formulae of geometry and mechanics differ

slightly in the matter of sign, it is advisable to settle once for

all which shall be adopted. In this book the right-handed or

counterclockwise system Avill be invariably employed.

1 A left-handed system may be formed by the left hand just as a right-handed

one was formed by the right.
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Definition : The three letters i, j, k will be reserved to de-

note three vectors of unit length drawn respectively in the

directions of the X-, Y-, and Z- axes of a right-handed rectan-

gular system.

In terms of these vectors, any vector may be expressed as

r = a;i-|- yj + 2k. (6)

The coefficients x, y, z are the ordinary Cartesian coordinates

of the terminus of r if its origin be situated at the origin of

coordinates. The components of r parallel to the X-, Y-, and

^-axes are respectively

a; i, y j, z k.

The rotations about i from j to k, about j from k to i, and

about k from i to j are all positive.

By means of these vectors i, j, k such a correspondence is

established between vector analysis and the analysis in Car-

tesian coordinates that it becomes possible to pass at will

from either one to tiie other. There is nothing contradic-

tory between them. On the contrary it is often desirable

or even necessary to translate the formulae obtained by

vector methods into Cartesian coordinates for the sake of

comparing them with results already known and it is

still more frequently convenient to pass from Cartesian

analysis to vectors both on account of the brevity thereby

obtained and because the vector expressions show forth the

intrinsic meaning of the formulae.

Applications

*18.] Problems in plane geometry may frequently be solved

easily by vector methods. Any two non-coUinear vectors in

the plane may be taken as the fundamental ones in terms of

which all others in that plane may be expressed. The origin

may also be selected at pleasure. Often it is possible to
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make such an advantageous choice of the origin and funda-

mental vectors that the analytic work of solution is materially

simplified. The adaptability of the vector method is about

the same as that of oblique Cartesian coordinates with differ-

ent scales upon the two axes.

Example 1 : The line which joins one vertex of a parallelo-

gram to the middle point of an opposite side trisects the diag-

onal (Fig. 9).

Let ABOD be the parallelogram, BE the line joining the

vertex B to the middle point E of the side

AD, B the point in which this line cuts the

diagonal A O. To show ^^ is one third of

A C. ChooseA as origin,AB and -4 Z> as the

two fundamental vectors S and T. Then
AG \& the sum of S and T. Let AB = E. To show

R = i (S + T).

Ii = AB = AE+ EB = LT + x(S-tT:)

where x is the ratio of EB to EB— an imknown scalar.

And R = y(S4:T),

where y is the scalar ratio of A^ to -4 C to be shown equal

toi.

Hence ^ T + a; (S - i T) = y (S -|- T)

or a;S-l-i(l-a;)T = yS-f-2/T.

Hence, equating corresponding coefficients (Art. 16),

x = y,

-Q.-x)=y.
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From which y = \ ." 3

Inasmuch as x is also g- the line EB must be trisected as

well as the diagonal A G.

Example 2: If,through any point within a triangle, lines

be drawn parallel to the sides ,the sum of the ratios of these

lines to their corresponding sides is 2.

Let ABC\iQ the triangle, B the point within it. Choose

A as origin, A B and ^ C as the two fundamental vectors S

and T. Let

AB = E = m S + M T. (a)

TO S is the fraction oi AB which is cut off by the line through

B parallel \a AC. The remainder oi AB must be the frac-

tion (1 — »^S. Consequently by similar triangles the ratio of

the line parallel to -4 C to the line A C itself is (1 — m).

Similarly the ratio of the line parallel to ^ 5 to the line AB
itself is (1 — 7i). Next express E in terms of S and T — S the

third side of the triangle. Evidently from (a)

E = (m + w) S + m (T - S}.

Hence (m + w) S is the fraction oi AB which is cut off by the

line through B parallel to B 0. Consequently by similar tri-

angles the ratio of this line to 5(7 itself is (m + n). Adding

the three ratios

(1 - m) -1- (1 - w) -I- (m + ») = 2,

and the theorem is proved.

Example 3: If from any point within a parallelogram lines

be drawn parallel to the sides, the diagonals of the parallelo-

grams thus formed intersect upon the diagonal of the given

parallelogram.

Let ABCD be a parallelogram, B a point within it, KM
and LNtwo lines through B parallel respectively to AB and



24 VECTOR ANALYSIS

AD, the points Z", Z, M, iV lying upon the sides DA,AB,
BO, CD respectively. To show that the diagonals KN and

LM of the two parallelograms KBND and LBME meet

on A C. Choose A as origin, AB and ^ I> as the two funda-

mental vectors S and T. Let

E = AB = m S + ra T,

and let P be the point of intersection of ^iVwith LM.

Then YN= KB + BN=m% + {1 - n)^,

s = Ti>=ae:+xKN,
n'=(l-m)S + mT,

B = A^=AL + yLM.

Hence
,

P = to T + a; [m S + (1 - m) T],

and P = m S + y [(1 - w.) S + » T].

Equating coefficients,

x'm = 'm + y(X — m)

y n = n + X (1 — n)

_ , . n
By solution, x = =»

•^ m + n — 1

m
y = m + n — 1

Substituting either of these solutions in the expression for P,

the result is

which shows that P is coUinear with A G.

* 19.] Problems in three dimensional geometry may be

solved in essentially the same manner as those in two dimen-

sions. In this case there are three fundamental vectors in

terms of which all others can be expressed. The method of

solution is analogous to that in the simpler case. Two
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expressions for the same vector are usually found. The co-

efficients of the corresponding terms are equated. In this way

the equations between three unknown scalars are obtained

from which those scalars may be determined by solution and

then substituted in either of the expressions for the required

vector. The vector method has the same degree of adapta-

bility as the Cartesian method in which oblique axes with

different scales are employed. The following examples like

those in the foregoing section are worked out not so much for

their intrinsic value as for gaining a familiarity with vectors.

Example 1 : Let AB CD be a tetrahedron and P any

point within it. Join the vertices to P and produce the lines

until they intersect the opposite faces in A\ B', C, D'. To

show
PA' PB' PC PD'
AA''^ 'BB'

"* GC *" DD' ~ '

Choose A as origin, and the edges AB, AC, AD as the

three fundamental vectors B, C, D. Let the vector ^P be

"B = AP=l'&-\- mC + n'O,

A' = ^ ^' = ;&! P = Ai G B -I- m C 4- 71 D).

Also K' ==AA' :=AB + BA'.

The vector BA ' is coplanar with J5 C = C — B and BD =
D — B. Hence it may be expressed in terms of them.

A' = B + a;i(C-B) + 2/i(D^B).

Equating coefficients ij m = ajj,

if

Hence Ai =
I + m + n

PA' ^1-1 , ,,
, ^ ,

and -T—p = -^7— =1- (l + m + 7i).
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In like manner ^ 5'= a;, C + y„ D

and AB' = AB + B£'=Ji + k^(r-B').

Hence x^C + y^Ty^B + k^{lB + mC + nJi -B)

and = 1 + ^2 (^ - 1),

Vi = *2 »•

Hence k^ =

PB' k,-l
^^•^

BB' = -j;-=^-'

In the same way it may be shown that

PC ,PD'
^^ = mand^^ = ».

Adding the four ratios the result is

1 — (Z + m + ra) + ^ + m+M = l,

Example ^ : To find a line which passes through a given

point and cuts two given lines in space. \
Let the two lines be fixed respectively by two points A

and B, G and Z> on each. Let be the given point. Choose

it as origin and let

A=OA, B=OB, C=OC, T)=OD.

Any point Poi AB may be expressed as

¥=0P= OA + xAB = A + x (B-A).

Any point Q of OD may likewise be written

Q,= OQ=0^+y'GB = C + y(p-C').

If the points P and Q lie in the same line through 0, P and Q,

are coUinear. That is

P = 3Q.
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Before it is possible to equate coefficients one of the four

vectors must be expressed in terms of the other three.

Let Ji = lA + mB + nC. ^ /*""
-

Then ,-*.,>^t*nr^tt=:2r ?- ^fc
~'' ^^ ^

= z[C + y (lA + mB+ nO — C)].

Hence 1 — x = zyl,

X = zym,
= z[l + y(n-l-)l

Hence
1 +
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The components of P parallel to A and B are in inverse ratio

to the segments AP and PB into which the line A Bis

divided by the point P. If it should so happen that P divided

the line AB externally, the ratio AP / PB would be nega-

tive, and the signs of m, and n would be opposite, but the

formula would hold without change if this difference of sign

in m and n be taken into account.

Example 2 : To find the point of intersection of the medians

of a triangle.

Choose the origin at random. Let ABC he the given

triangle. Let OA = A, OB = B, and 00 = C. Let A', B',G'

be respectively the middle points of the sides opposite the

vertices A, B, C. Let M be the point of intersection of the

medians and TS. = DM the vector drawn to it. Then

M = OM=OA + xAA' = A + x f*^^
- A) + (C - A) l

and

K=OM=OB + yBB' = -B + y[
^°~'^^'^^^~'^^

-

Assuming that has been chosen outside of the plane of the

triangle so that A, B, C are non-coplanar, corresponding coeffi-

cients may be equated.

l-x=\y.

1
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The vector drawn to the median point of a triangle is equal

to one third of the sum of the vectors drawn to the vertices.

In the problems of which the solution has just been given

the origin could be chosen arbitrarily and the result is in-

dependent of that choice. Hence it is even possible to disre-

gard the origin entirely and replace the vectors A, B, C, etc.,

by their termini A,B,C, etc. Thus the points themselves

become the subjects of analysis and the formulse read

nA-\-mBP = m + n

and M=\(^A + B+ C).

This is typical of a whole class of problems soluble by vector

methods. In fact any purely geometric relation between the

different parts of a figure must necessarily be independent

of the origin assumed for the analytic demonstration. In

some cases, such as those in Arts. 18, 19, the position of the

origin may be specialized with regard to some crucial point

of the figure so as to facilitate the computation ; but in many

other cases the generality obtained by leaving the origin un-

specialized and undetermined leads to a symmetry which

reiiders the results just as easy to compute and more easy

to remember.

Theorem : The necessary and sufficient condition that a

vector equation represent a relation independent of the origin

is that the sum of the scalar coefficients of the vectors on

one side of the sign of equality is equal to the sum of the'

coefficients of the vectors upon the other side. Or if all the

terms of a vector equation be transposed to one side leaving

zero on the other, the sum of the scalar coefficients must

be zero.

Let the equation written in the latter form be

aA-t-5B-|-cC-|-c?D-| = 0.
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Change the origin from to C by adding a constant vector

E = OW' to each of the vectors A, B, C, D The equation

then becomes

a (A + E) + 5 (B + E) + c (C + E) + d (D + R) + • • • =

= aA + &B + cC + <iD+---+R(a + 6 + c + d+...).

If this is to be independent of the origin the coefficient of E
must vanish. Hence

a + h + + d-\ = 0.

That this condition is fulfilled in the two examples cited

is obvious.

nA + m'B
If P = m + n

n m
1 = — +m + n m + n

If M = J (A + B + C),

'• ~ 3
•"

3 •" 3
•

* 21.] The necessary and sufficient condition that two

vectors satisfy an equation, in which the sum of the scalar

coefficients is zero, is that the vectors be equal in magnitude

and in direction.

First let aA + 6B =
and a + b = 0.

It is of course assumed that not both the coefficients a and 6

vanish. If they did the equation would mean nothing. Sub-

stitute the value of a obtained from the second equation into

the first.

-6A + 6B = 0.

Hence A = B.
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Secondly if A and B are equal in magnitude and direction

the equation

A-B =

subsists between them. The sum of the coefficients is zero.

The necessary and sufficient condition that three vectors

satisfy an equation, in which the sum of the scalar coefficients

is zero, is that when drawn from a common origin they termi-

nate in the same straight line.^

First let aA + 6B + cC =
and a + 6 + c = 0.

Not aU the coefficients a, b, e, vanish or the equations

would be meaningless. Let c be a non-vanishing coefficient.

Substitute the value of a obtained from the second equation

into the first.

-(6 + c)A-f-6B + cC = 0,

or c (C - A) = 6 (A - B).

Hence the vector which joins the extremities of C and A is

collinear with that which joins the extremities of A and B.

Hence^those three points A, B, C lie on a line. Secondly

suppoS"e three vectors A= OA,'B = OB,C = OC drawn from

the same origin terminate in a straight line. Then the

vectors

AB = B - A and AG = C - A

are collinear. Hence the equation

(B - A) = a; (C - A)

subsists. The sum of the coefficients on the two sides is

the same.

The necessary and sufficient condition that an equation,

in which the sum of the scalar coefficients is zero, subsist

' Yectois which have a common origin and teiminate in one line aie called hj

Hamilton " termino-collinear."
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between four vectors, is that if drawn from a common origin

they terminate in one plane.^

First let aA + 6B + cC + fZD =
and a + 6 + c + <f = 0.

Let <Z be a non-vanishing coefficient. Substitute the value

of a obtained from the last equation into the first.

— {h + c + d)A + l'B + cC + dJi = 0,

or d(D-A) = 6 (A-B) + c(A-C).

The line ^Z> is coplanar with AB and A G. Hence all four

termini A, B, C, D of A, B, C, D lie in one plane. • Secondly

suppose that the termini of A, B, C, D do lie in one plane.

Then AD = D - A, 'AG = C - A, and AB ^ B - A are co-

planar vectors. One of them may be expressed in terms of

the other two. This leads to the equation

^ (B - A) + m (C - A) + 71 (D - A) = 0,

where I, m, and n are certain scalars. The sum of the coeffi-

cients in this equation is zero.

Between any five vectors there exists one equation the sum
of whose coefficients is zero.

Let A, B, C, D, £ be the five given vectors. Form the

differences

E-A, E-B, E-C, E-D.

One of these may be expressed in terms of the other three

— or what amounts to the same thing there must exist an

equation between them.

/fc (E - A) + Z (E - B) + m (E - C) + w (E - D) = 0.

The sum of the coefficients of this equation is zero.

I Vectors which have a common origin and terminate in one plane are called

by Hamilton " termirwxomplanaT"
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«i
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However the points U, C, and A lie upon the same straight

line. Hence the equation which connects the vectors E,C,

and A must be such that the sum of its coefficients is zero.

This determines xasl — n.

Hence E - mC = D - wB = (1 - m) A.

By another rearrangement and similar reasoning

E + wB = D + wC = (l + w)G.

Subtract the first equation from the second:

n(B + C^ = (l + n)6-(l- m) A.

This vector cuts BC and AG. It must therefore be a

multiple of F and such a multiple that the sum of the coeffi-

cients of the equations which connect B, C, and F or G, A,

and F shall be zero.

Hence w (B + C) = (1 + m) G - (1 - w) A = 2 wF.

B + C
Hence F = —-—

»

and the theorem has been proved. The proof has covered

considerable space because each detail of the reasoning has

been given. In reality, however, the actual analysis has con-

sisted of just four equations obtained simply from the first.

Example 2 : To determine the equations of the line and

plane.

Let the line be fixed by two points A and B upon it. Let

F be any point of the line. Choose an arbitrary origin.

The vectors A, B, and P terminate in the same line. Hence

aA + 6B+^P =
and a + h + p = 0.

Therefore P = ;

—

a + b
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For different points P the scalars a and 6 have different

values. They may be replaced by x and y, which are used

more generally to represent variables. Then

P = xA + yB
x + y

Let a plane be determined by three points A,B, and C.

Let F be any point of the plane. Choose an arbitrary origin.

The vectors A, B, C, and P terminate in one plane. Hence

aA + 6B + cC+p'P =
and. a + i + c+p = 0.

aA + bB + cC
Therefore P =

a + b + c

As a, i, c, vary for different points of the plane, it is more

customary to write in their stead x, y, z.

xA + yB + zC
P =

x + y + s

Example 3: The line which joins one vertex of a com-

plete quadrilateral to the intersection of two diagonals

divides the opposite sides har-

monically (Fig. 12).

Let A, B, G, D be four ver^ces

of a quadrilateral. Let AB meet

CD in a fifth vertex E, and AD
meet 5C in the sixth vertex F.

Let the two diagonals AC and -pj^ 22
*

BD intersect in G. To show

that FG intersects AB ina, point F' and CD in a point F"

such that the lines AB and CD are divided internally at

F' and F" in the same ratio as they are divided externally

by F, That is to show that the cross ratios

iA B . FF') = (CD -FF") = - 1.
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Choose the origin at random. The four vectors A, B, C, D

drawn from it to the points A, B, C, D terminate in one

plane. Hence
aA + 6B + cC + dD =

and a-t-6 + c + <^ = 0.

Separate the equations by transposing two terms

:

aA + cC = - (&B + dD),

a + c = — ip + d).

aA + cC 6B + c?D
Divide

:

G =

In like manner P =

Form

a + c h + d

aA + dTi 6B + cC

a + d h + c

(a + c)G — (a + d)F _ cC — dH
(a + c) — (a + d) {a + c) — {a + d)

{a + c)Q,-{a + d)-E cG ^ dJi
or -z

= ^— = Ji . (.aj
c — d c — a

Separate the equations again and divide

:

aA + 6B cC + dH
a + b c + d

= E. (6)

Hence E divides AB in the ratio a : 6 and CD in the ratio

c .• d. But equation (a) shows that H" divides CD in the

ratio — c:d. Hence B and B" divide CD internally and

externally in the same ratio. Which of the two divisions is

internal and which external depends upon the relative signs

of c and d. If they have the same sign the internal point

of division is B; if opposite signs, it is B". In a similar way
B' and B may be shown to divide AB harmonically.

Bxamjole 4 ' To discuss geometric nets.

By a geometric net in a plane is meant a figure composed

of points and straight lines obtained in the following manner.

Start with a certain number of points all of which lie in one
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plane. Draw all the lines joining these points in pairs.

These lines will intersect each other in a number of points.

Next draw all the lines which connect these points in pairs.

This second set of lines will determine a still greater number

of points which may in turn be joined in pairs and so on.

The construction may be kept up indefinitely. At each step

the number of points and lines in the figure increases.

Probably the most interesting case of a plane geometric net is

that in which four points are given to commence with.

Joining these there are six lines which intersect in three

points different from the given four. Three new lines may
now be drawn in the figure. These cut out six new points.

From these more lines may be obtained and so on.

To treat this net analytically write down the equations

aA + bB + cC + d'D = (c)

and a + h + c + d =

which subsist between the four vectors drawn from an unde-

termined origin to the four given points. From these it is

possible to obtain

aA + hB cC-iLdJ)
£ = — = = *-—r— J

F =

a + h , c + d

aA+ cC SB + dD

G =

a + c b + d

aA + dD 6B + cC
;— = —

;

J

a + d + e

by splitting the equations into two parts and dividing, Next

four vectors such as A, D, E, F may be chosen and the equa-

tion the sum of whose coefficients is zero may be determined.

This would be

— aA + d'D + (a + 6)E+ {a + c)F = 0.

By treating this equation as (c) was treated new points may

be obtained.
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_-ak + dJi _ (g + 6)E + (a + c)E

~
J a + c + ei

-aA+(a+ c)E <iD+(a + &)E

c a + h + d

Equations between other sets of four vectors selected from

A,B,C,D,E,F, may be found; and from these more points

obtained. The process of finding more points goes forward

indefinitely. A fuller account of geometric nets may be

found in Hamilton's " Elements of Quaternions," Book I.

As regards geometric nets in space just a word may be

said. Five points are given. From these new points may be

obtained by finding the intersections of planes passed through

sets of three of the given points with lines connecting the

remaining pairs. The construction may then be carried for-

ward with the points thus obtained. The analytic treatment

is similar to that in the case of plane nets. There are

five vectors drawn from an undetermined origin to the given

five points. Between these vectors there exists an equation

the sum of whose coefficients is zero. This equation may be

separated into parts as before and the new points may thus

be obtained.

If aA + 6B + cC + c?D + eE =

and
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Centers of Gravity

* 23.] The center of gravity of a system of particles may-

be found very easily by vector methods. The two laws of

physics which will be assumed are the following:

1°. The center of gravity of two masses (considered as

situated at points) lies on the line connecting the two masses

and divides it into two segments which are inversely pro-

portional to the masses at the extremities.

2°. In finding the center of gravity of two systems of

masses each system may be replaced by a single mass equal

in magnitude to the sum of the masses in the system and

situated at the center of gravity of the system.

Given two masses a and 6 situated at two points A and B.

Their center of gravity G is given by

where the vectors are referred to any origin whatsoever.

This follows immediately from law 1 and the formula (7)

for division of a line in a given ratio.

The center of gravity of three masses a, &, c situated at the

three points A, B, C may be found by means of law 2. The

masses a and & naay be considered as equivalent to a single

mass a + b situated at the point

a A + 6B

a + b

Then Q = (a + b) "^^^f^ + e C
^

'^ a + b

a +b + c

aA + bB + cC
Hence G =

, , ,

a + b + c
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Evidently the center of gravity of any number of masses

a, h, c, d, ... situated at the points A, B, C, D, ... may

be found in a similar manner. The result is

— a + i + c + d+ ' ^ ^

Theorem 1 : The lines which join the center of graiVitvof a

triangle to the vertices divide it into three triangleSi.which

are proportional to the masses at the op-

posite vertices (Fig. 13). Let A, B, G
be the vertices of a triangle weighted

with masses a, h, c. Let G be the cen-

ter of gravity. Join A, B, C to G and

produce the lines until they intersect

the opposite sides in A', B', C" respectively. To show that

the areas

GBC:GOA:GAB:ABO=a:h:c:a + h + c.

The last proportion between ABC and a + h + c comes
from compounding the first three. It is, however, useful in

the demonstration.

ABO ^AA' _AG GA' i + c

GBG~ GA' ~ GA''^ GAJ ~ ~^ '^
'^'

Hence ^^^ "^ + ^ + '

GBO

In a similar manner

and

BOA _ a -I- J + c

WCA I

CAB _ g + 5 + c

6AB~ c

Hence the proportion is proved.

Theorem 2: The lines which join the center of gravity of
a tetrahedron to the vertices divide the tetrahedron into four
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tetrsLhedraJwhich are proportional to the masses at the oppo-

site vertices.

Let A, B, C, D be the vertices of the tetrahedron weighted

respectively with weights a, h, c, d. Let G be the center of

gravity^ Join A, B, C, D to Q and produce the lines until

they meet the opposite faces in A', B', C, D'. To show that

the volumes

BCDQ:CDAG:DABG:ABCG:ABCD
= a :i : c : d : a + h + c + d.

BCDA _ AAJ^ _ A_G_ GA^ _ h + e + d

BCBG~ GA' ~ GA' ^ WA' " a ^

a + b + c + d

In like manner

and

and
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a, J, c may therefore be looked upon as coordinates of the

points P inside of the triangle ABG. To each set there

corresponds a definite point P, and to each point P there

corresponds an infinite number of sets of quantities, which

however do not differ from one another except for a factor

of proportionality.

To obtain the points P of the plane ABC which lie outside,

of the triangle ABG one may resort to the conception of

negative weights or masses. The center of gravity of the

masses 2 and — 1 situated at the points A and B respectively

would be a point G dividing the line AB externally in the

ratio 1 : 2. That is

GA:GB = 1:2.

Any point of the line AB produced may be represented by
a suitable set of masses a, h which differ in sign. Similarly

any point P of the plane ABG may be represented by a

suitable set of masses a, b, c of which one will differ in sign

from the other two if the point P lies outside of the triangle

ABG. Inasmuch as only the ratios of a, h, and c are im-

portant two of the quantities may always be taken positive.

The idea of employing the masses situated at the vertices

as coordinates of the center of gravity is due to Msbius and
was published by him in his book entitled '' Barycentrische

GalciU" in 1826. This may be fairly regarded as the starting"^

point of modern analytic geometry.

The conception of negative masses which have no existence

in nature may be avoided by replacing the masses at the

vertices by the areas of the triangles GBG, GGA, and
GAB to which they are proportional. The coordinates of

a point P would then be three numbers proportional to the

areas of the three triangles of which P is the common vertex

;

and the sides of a given triangle ABG, the bases. The sign

of these areas is determined by the following definition.
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Definition: The area ABC ot a triangle is said to be

positive when the vertices A, B, G follow each other in the

positive or counterclockwise direction upon the circle de-

scribed through them. The area is said to be negative when

the points follow in the negative or clockwise direction.

Cyclic permutation of the letters therefore does not alter

the sign of the area.

ABG=BGA = GAB.

Interchange of two letters which amounts to a reversal of

the cyclic order changes the sign.

ACB = BAG=CBA = -ABC.

If P be any point within the triangle the equation

FAB+PBC+FGA=ABG
must hold. The same will also hold if P be outside of the

triangle provided the signs of the areas be taken into con-

sideration. The areas or three quantities proportional to

them may be regarded as coordinates of the point P.

The extension of the idea of " iarycentric " coordinates to

space is immediate. The four points A, B, G, D situated at

the vertices of a tetrahedron are weighted with mass a, 6, c, d

respectively. The center of gravity G is represented by

these quantities or four others proportional to them. To
obtain points outside of the tetrahedron negative masses

may be employed. Or in the light of theorem 2, page 40,

the masses may be replaced by the four tetrahedra which

are proportional to them. Then the idea of negative vol-

umes takes the place of that of negative weights. As this

idea is of considerable importance later, a brief treatment of

it here may not be out of place.

Definition: The volume ABGD of a tetrahedron is said

to be positive when the triangle ABG appears positive to
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the eye situated at the point D. The volume is negative

if the area of the triangle appear negative.

To make the discussion of the signs of the various

tetrahedra perfectly clear it is almost necessary to have a

solid model. A platie drawing is scarcely sufficient. It is

difficult to see from it which triangles appear positive and

which negative. The following relations will be seen to

hold if a model be examined.

The interchange of two letters in the tetrahedron ABOD
changes the sign.

AGBD=GBAB=BACD=DBGA
= ADCB = ABDO = -ABCD.

The sign of the tetrahedron for any given one of the pos-

sible twenty-four arrangements of the letters may be obtained

by reducing that arrangement to the order A B G D hj

means of a number of successive interchanges of two letters.

If the number of interchanges is even the sign is the same

as that oiABGD ; if odd, opposite. Thus

CAI>B = -GABD = + AGBD = -ABGD.
If P is any point inside of the tetrahedron ABGD the

equation

ABGP-BG1)P+ GDAP-DABP=ABGD
holds good. It still is true if P be without the tetrahedron

provided the signs of the volumes be taken into considera-

tion. The equation may be put into a form more symmetri-

cal and more easily remembered by transposing all the terms

to one number. Then

ABGD + BGDP+ GDPA + DPAB + PABG=0.
The proportion in theorem 2, page 40, does not hold true

if the signs of the tetrahedra be regarded. It should read

BGDG:GDGA:DQAB: GABG:ABGD
= a ; 6 ; c ; d ; a + 6 + c + d.
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If the point & lies inside the tetrahedron a, b, c, d repre-

sent quantities proportional to the masses which must be

located at the vertices A,B,G,D respectively if G is to be the

center of gravity. If G lies outside of the tetrahedron they may
still be regarded as masses some of which are negative— or

perhaps better merely as four numbers whose ratios determine

the position of the point G: In this manner a set of "lary-

centric " cotirdinates is established for space.

The vector P drawn from an indeterminate origin to any

point of the plane ABGis (page 35)

xA + yB + zC

x + y + e

Comparing this with the expression

aA + &B + cC

a + b + c

it wUl be seen that the quantities x, y, z are in reality nothing

more nor less than the barycentric coordinates of the point P
with respect to the triangle ABC. In like manner from

equation

x + y + z -{ w

which expresses any vector P drawn from an indeterminate

origin in terms of four given vectors A, B, C, D drawn from

the same origin, it may be seen by comparison with

aA + &B + c C + tZD.
G =

a + b + c + d

that the four quantities x, y, z, w are precisely the bary-

centric coordinates of P, the terminus of P, with respect to

the tetrahedron AB CD. Thus the vector methods in which

the origin is undetermined and the methods of the " Bary-

centric Calculus " are practically co-extensive.

It was mentioned before and it may be well to repeat hei'e
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that the origin may be left wholly out of consideration and

the vectors replaced by their termini. The vector equations

then become point equations

xA + pS + zC
P =

and P =

X + y + z

xA + yB + zC + wD
X + y + z + w.

This step brings in the points themselves as the objects of

analysis and leads still nearer to the '' Barycentrische Caleiil"

of MSbius and the ''Ausdehnungslehre " of Grassmann.

The Use of Vectors to denote Areas

25.] Definition: An area lying in one plane MN and

bounded by a continuous curve PQR which nowhere cuts

itself is said to appear positive from the point when the

letters PQB follow each

other in the counterclockwise

or positive order; negative,

when they follow in the

negative or clockwise order

(Fig. 14).

It is evident that an area

can have no determined sign

per se, but only in reference

to that direction in which its

boundary is supposed to be traced and to some point out-

side of its plane. For the area P B Qis negative relative to

PQB; and an area viewed from is negative relative to the

same area viewed from a point 0' upon the side of the plane

opposite to 0. A circle lying in the XF-plane and described

in the positive trigonometric order appears positive from every

point on that side of the plane on which the positive ^axis

lies, but negative from all points on the side upon which
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the negative ^-axis lies. For this reason the point of view

and the direction of description of the boundary must be kept

clearly in mind.

Another method of stating the definition is as follows : If

a person walking upon a plane traces out a closed curve, the

area enclosed is said to be positive if it lies upon his left-

hand side, negative if upon his right. It is clear that if two

persons be considered to trace out together the same curve by

walking upon opposite sides of the plane the area enclosed

wiU. lie upon the right hand of one and the left hand of the

other. To one it will consequently appear positive ; to the

other, negative. That side of the plane upon which the area

seems positive is called the positive side ; the side upon

which it appears negative, the negative side. This idea is

familiar to students of electricity and magnetism. If an

electric cun-ent flow around a closed plane curve the lines of

magnetic force through the circuit pass from the negative to

the positive side of the plane. A positive magnetic pole

placed upon the positive side of the plane will be repelled by

the circuit.

A plane area may be looked upon as possessing more than

positive or negative magnitude. It may be considered to

possess direction, namely, the direction of the normal to the

positive side of the plane in which it lies. Hence a plane

area is a vector quantity. The following theorems concerning

areas when looked upon as vectors are important.

Theorem 1 : li a, plane area be denoted by a vector whose

magnitude is the numerical value of that area and whose

direction is the normal upon the positive side of the plane,

then the orthogonal projection of that area upon a plane

will be represented by the component of that vector in the

direction normal to the plane of projection (Fig. 15).

Let the area A lie in the plane MK Let it be projected

orthogonally upon the plane M' N'. LetMN and M'N' inter-
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sect in the line I and let the diedral angle between these

two planes be x. Consider first a rectangle PQBS in MN
whose sides, PQ,BS and QB, SP are respectively parallel

and perpendicular to the line I. This will project into a

rectangle P'Q'B'S' in M'N'. The sides P' Q' and B'iS'

will be equal to PQ and BS; but the sides Q'B' and S'P'

will be equal to QB and SP multiplied by the cosine of x,

the angle between the planes. Consequently the rectangle

P'Q'B'8' = PQBS cos X.
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Each of these rectangles when projected is multiplied by the

cosine of the angle between the planes and hence the total

area is also multiplied by the cosine of that angle. On the

other hand the component A' of the vector A, which repre-

sents the given area, in the direction normal to the plane

M'N' of projection is equal to the total vector A multiplied

by the cosine of the angle between its direction which is

the normal to the plane ifiVand the normal to M'N'- This

angle is a; ; for the angle between the normals to two planes

is the same as the angle between the planes. The relation

between the magnitudes of A and A' is therefore

A' = A cos X,

which proves the theorem.

26.] Definition : Two plane areas regarded as vectors are

said to be added when the vectors which represent them are

added.

A vector area is consequently the sum of its three com-

ponents obtainable by orthogonal projection upon three

mutually perpendicular planes. Moreover in adding two

areas each may be resolved into its three components, the

corresponding components added as scalar quantities, and

these sums compounded as vectors into the resultant area.

A generalization of this statement to the case where the three

planes are not mutually orthogonal and where the projection

is oblique exists.

A surface made up of several plane areas may be repre-

sented by the vector which is the sum of all the vectors

representing those areas. In case the surface be looked upon

as forming the boundary of a portion of the boundary of a

solid, those sides of the bounding planes which lie outside of

the body are conventionally taken to be positive. The vec-

tors which represent the faces of solids are always directed

out from the solid, not into it.

4
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Theorem 2 : The vector which represents a closed polyhedral

surface is zero.

This may be proved by means of certain considerations of

hydrostatics. Suppose the polyhedron drawn in a body of

fluid assumed to be free from all external forces, gravity in-

cluded.^ The fluid is in equilibrium under its own internal

pressures. The portion of the fluid bounded by the closed

surface moves neither one way nor the other. Upon each face

of the surface the fluid exerts a definite force proportional

to the area of the face and normal to it. The resultant of all

these forces must be zero, as the fluid is in equilibrium. Hence

the sum of aU the vector areas in the closed surface is zero.

The proof may be given in a purely geometric manner.

Consider the orthogonal projection of the closed surface upon

any plane. This • consists of a double area. The part of the

surface farthest from the plane projects into positive area;

the part nearest the plane, into negative area. Thus the

surface projects into a certain portion of the plane which is

covered twice, once with positive area and once with negative.

These cancel each other. Hence the total projection of a

closed surface upon a plane (if taken with regard to sign) is

zero. But by theorem 1 the projection of an area upon a

plane is equal to the component of the vector representing

that area in the direction perpendicular to that plane. Hence

the vector which represents a closed surface has no component

along the line perpendicular to the plane of projection. This,

however, was any plane whatsoever. Hence the vector is

zero.

The theorem has been proved for the case in which the

closed surface consists of planes. In case that surface be

' Snch a state of affairs is realized to all practical purposes in the case of a

polyhedron suspended in the atmosphere and consequently subjected to atmos-

pheric pressure. The force of gravity acts but is counterbalanced by the tension

in the suspending string.
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curved it may be regarded as the limit of a polyhedral surface

whose number of faces increases without limit. Hence the

vector which represents any closed surface polyhedral or

curved is zero. If the surface be not closed but be curved it

may be represented by a vector just as if it were polyhedral.

That vector is the limit ^ approached by the vector which

represents that polyhedral surface of which the curved surface

is the limit when the number of faces becomes indefinitely

great.

Summary of Chapter I

A vector is a quantity considered as possessing magnitude

and direction. Equal vectors possess the same magnitude

and the same direction. A vector is not altered by shifting it

parallel to itself. A null or zero vector is one whose mag-

nitude '
is zero. To multiply a vector by a positive scalar

multiply its length by that scalar and leave its direction

unchanged. To multiply a vector by a negative scalar mul-

tiply its length by that scalar and reverse its direction.

Vectors add according to the parallelogram law. To subtract

a vector reverse its direction and add. Addition, subtrac-

tion, and multiplication of vectors by a scalar follow the same

laws as addition, subtraction, and multiplication in ordinary

algebra. A vector may be resolved into three components

parallel to any three non-coplanar vectors. This resolution

can be accomplished in only one way.

r = ica + yb + 2C. (!4)

The components of equal vectors, parallel to three given

non-coplanar vectors, are equal, and conversely if the com-

ponents are equal the vectors are equal. The three unit

vectors i, j, k form a right-handed rectangular system. In

1 This limit exists and is unique. It is independent of the method in which

the polyhedral surface approaches the curved surface.
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terms of them any vector may be expressed by means of the

Cartesian cob'rdinates x, y, z.

r — xi + yi + zTs.. (6)

Applications. The point which divides a line in a given

ratio m : » is given by the formula

m + n

The necessary and sufficient condition that a vector equation

represent a relation independent of the origin is that the sum

of the scalar coefficients in the equation be zero. Between

any four vectors there exists an equation with scalar coeffi-

cients. If the sum of the coefficients is zero the vectors are

termino-coplanar. If an equation the sum of whose scalar

coefficients is zero exists between three vectors they are

termino-coUinear. The center of gravity of a number of

masses a,'b,c • situated at the termini of the vectors

A, B, C • • • supposed to be drawn from a common origin is

given by the formula

^^aA + 5B + cC+..._

a + h + c-\- •• ^ '

A vector may be used to denote an area. If the area is

plane the magnitude of the vector is equal to the magnitude

of the area, and the direction of the vector is the direction of

the normal upon the positive side of the plane. The vector

representing a closed surface is zero.

Exercises on Chapter I

^ 1. Demonstrate the laws stated in Art. 12.

,2. A triangle may be constructed whose sides are parallel

and equal to the medians of any given triangle.
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3. The six points in which the three diagonals of a com-

plete quadrangle ^ meet the pairs of opposite sides lie three

by three upon four straight lines.

4. If two triangles are so situated in space that the three

points of intersection of corresponding sides lie on a line, then

the lines joining the corresponding vertices pass through a

common point and conversely.

5. Given a quadrilateral in space. Find the middle point

of the line which joins the middle points of the diagonals.

Find the middle point of the line whieh joins the middle

points of two opposite sides. Show that these two points are

the same and coincide with the center of gravity of a system

of equal masses placed at the vertices of the quadrilateral.

6. If two opposite sides of a quadrilateral in space be

divided proportionally and if two quadrilaterals be formed by

joining the two points of division, then the centers of gravity

of these two quadrilaterals lie on a line with the center of

gravity of the original quadrilateral. By the center of gravity

is meant the center of gravity of four equal masses placed at

the vertices. Can this theorem be generalized to the case

where the masses are not equal?

7. The bisectors of the angles of a triangle meet in a

point.

8. If the edges of a hexahedron meet four by four in three

points, the four diagonals of the hexahedron meet in a point.

In the special case in which the hexahedron is a parallelopiped

the three points are at an infinite distance.

, 9. Prove that the three straight lines through the middle

points of the sides of any face of a tetrahedron, each parallel

to the straight line connecting a fixed point P with the mid-

dle point of the opposite edge of the tetrahedron, meet in a

1 A complete quadrangle consists of the six straight lines which may be passed

through four points no three of which are collinear. The diagonals are the lines

which join the points of intersection of pairs of sides.
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point E and that this point is such that PH passes through

and is bisected by the center of gravity of the tetrahedron.

10. Show that without exception there exists one vector

equation with scalar coefficients between any four given

vectors A, B, C, D.

/ 11. Discuss the conditions imposed upon three, four, or

five vectors if they satisfy two equations the sum of the co-

efficients in each of which is zero.



CHAPTER II

DIRECT AND SKEW PBODUCTS OF VECTORS

Products of Two Vectors

27.] The operations of addition, subtraction, and scalar

multiplication have been defined 5or vectors in the way

suggested by physics and have been employed in a few

applications. It now becomes necessary to introduce two

new combinations of vectors. These will be called products

because they obey the fundamental law of products ; i. e., the

distributive law which states that the product of A into the

sum of B and C is equal to the sum of the products of A into

B and A into C.

Definition : The direct product of two vectors A and B is

the scalar quantity obtained by multiplying the product of

the magnitudes of the vectors by the cosine of the angle be-

tween them.

The direct product is denoted by writing the two vectors

with a dot between them as

A.B.

This is read A dot B and therefore may often be called the

dot product instead of the direct product. It is also called

the scalar product owing to the fact that its value is sca-

lar. If ^ be the magnitude of A and B that of B, then by

definition

A^B = ^-Bcos (A,B). (1)

Obviously the direct product follows the commutative law

A.B = B.A. (2)
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If either vector be multiplied by a scalar the product is

multiplied by that scalar. That is

(£c A) 'B = A. (a;B) = a; (A. B).

In case the two vectors A and B are collinear the angle be-

tween them becomes zero or one hundred and eighty degrees

and its cosine is there^^ce equal to unity with the positive or

negative sign. Hence the scalar product of two parallel

vectors is numerically equal to the product of their lengths.

The sign of the product is positive when the directions of the

vectors are the same, negative when they are opposite. The

product of a vector by itself is therefore equal to the square

of its length

K'L=A\ (3)

Consequently if the product of a vector by itself vanish the

vector is a null vector.

In case the two vectors A and B are perpendicular the

angle between them becomes plus or minus ninety degrees

and the cosine vanishes. Hence the product A • B vanishes.

Conversely if the scalar product A • B vanishes, then

A B cos (A, B) = 0.

Hence either ^ or 5 or cos (A, B) is zero, and either the

vectors are perpendicular or one of them is null. Thus the

condition for the perpendicularity of two vectors, neither of

which vanishes, is A - B = 0.

28.] The scalar products of the three fundamental unit

vectors i, j, k are evidently

i • i = i • J = k • k = 1, (4)
i . j = j . k = k . i = 0.

If more generally a and b are any two unit vectors the

product

a • b = cos (a, b).
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Thus the scalar product determmes the cosine of the angle

between two vectors and is in a certain sense equivalent to

it. For this reason it might be better to give a purely

geometric definition of the product rather than one which

depends upon .trigonometry. This is easily accomplished as

follows : If a aflff b are two unit vectors, a • b is the length

of the projection of either upon the other. If more generally

A and B are any two vectors A • B is the product of the length

of either by the length of projection of the other upon it.

From these definitions the facts that the product of a vector

by itself is the square of its length and the product of two

perpendicular vectors is zero follow immediately. The trigo-

nometric definition can also readily be deduced.

The scalar product of two vectors will appear whenever the

cosine of the included angle is of importance. The following

examples may be cited. The projection of a vector B upon a

vector A is

A "R A 7i—— A = -j^ A a cos (A, H) — B cos (A, B) a, (5)
A*A -^^

where a is a unit vector in the direction of A If A is itself a

unit vector the formula reduces to

(A-B) A = 5cos (A,B) A.

If A be a constant fgrce and B a displacement the work done

by the force A during the displacement is A • B. If A repre-

sent a plane area (Art. 25), and if B be a

vector inclined to that plane, the scalar prod-

uct A • B will be the volume of the cylinder

of which the area A is the base and of

which B is the directed slant height. For

the volume (Fig. 16) is equal to the base -^^^ jg

A multiplied by the altitude h. This is

the projection of B upon A or 5 cos (A, B). Hence

V = Ah = A B cos {&.,"&) = L '"R.
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-29.] The scalar or direct product follows the distributive

law of multiplication. That is

(A + B) . C = A • C + B • C. (6)

This may be proved by means of projections. Let C be equal

to its magnitude C multiplied by a unit vector c in its direc-

tion. To show

(A + B) . (Ce) = A . (Cc) + B • (Cc)

or (A + B) .0 = A'C + B'C.

A • c is the projection of A upon c ; B • c, that of B upon c

;

(A + B) • c, that of A + B upon c. But the projection of the

sum A + B is equal to the sum of the projections. Hence

the relation (6) is proved. By an immediate generalization

(A + B+. ..)•(? + » + •• •) = A-P + A. Q + -"

+ B.P + B.a + --- (6)'

+

The scalar product may be used just as the product in ordi-

nary algebra. It has no peculiar difficulties.

If two vectors A and B are expressed in terms of the

three unit vectors i, j, k as

A = ^1 i + ^2 j + ^3 k,

and "&= B^i + B^i-ir B^]s.,

then A.B= {A^i + A^i + A^Ts.) . (^Byi + B^i + B^Y)

= ^1 ^1 i. i -I- ^1 ^ji. j 4- ^^^3 i.k

+ ^2^1] .i^+ ^2-BJ.i -H ^2^8 j. k

+ ^3 5lk .

J^+ ^3 ,52 k . j -1- ^3 ^3 k . k.

By means of (4) this reduces to

&..-& = A^B^ + A^B^ + A^B^, (7)

If in particular A and B are unit vectors, their components

Ai,A^,A^ and By,B^,B^ are the direction cosines of the

lines A and B referred toX, F, Z.
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A^ = cos (A, X), A^ = cos (A, F), A^ = cos (A, Z),

£i = cos (B, X), B^ = cos (B, 7), B^ = cos (B, Z).

Moreover A • B is the cosine of the included angle. Hence
the equation becomes

cos (A, B) = cos (A, X) cos (B, X) + cos (A, Y) cos (B, Y)

+ cos (A,^ cos (B,^).

In case A and B are perpendicular this reduces to the well-

known relation

= cos (A, -T) cos (B, X) + cos (A, Y) cos (B, F)

+ cos (A, Z) cos (B, Z)

between the direction cosines of the

line A and the line B.>

30.] If A and B are two sid^^ OA
and 0^ of a triangle OAB, th^ third

side ^5isC = B-A (Fig. 17).
^"*- "'

C.C = CB-A).(B-A) = B.B + A-A-2A« B cos^

or C'^ = A^ + B^-2AB cos (A B).

That is, the square of one side of a triangle is equal to the

sum of the squares of the other two sides diminished by twice

their product times the cosine of the angle between them.

Or, the square of one side of a triangle is equal to the sum of

the squares of the other two sides diminished by twice the

projection of either of those sides upon the other, the theorem

sometimes known as the generalized Pythagorean theorem.

If A and B are two sides of a parallelogram, C = A + B
and D = A — B are the diagonals. Then

C'C = (A + B).(A-|-B)=A.A + 2A.B + B.B,

D.D = (A-B).(A-B)=A.A-2A^B + B.B,

C-C + D.D = 2(A.A + B.B),

or C2 + ZI2 = 2 (^2 + ^2).
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That is, the sum of the squares of the diagonals of a parallelo-

gram is equal to twice the sum of the squares of two sides.

In like manner also

C.C-D.D = 4 A^B
or C^2 _ 2>2 =, 4 ^ ^ cos (A, B).

That is, the difference of the squares of the diagonals of a

parallelogram is equal to four times the product of one of the

sides by the projection of the other upon it.

If A is any vector expressed in terms of i, j, k as

A = ^1 i + ^2 j + ^3 k,

then L'li. = A'^ = A^^ + A^ + A^. (8)

But if A be expressed in terms of any three non-coplanar unit

vectors a, b, c as

A=aa + 6b + cc,

A»A = -42 = a2a'a + 6^b«bH-c2c«c + 2a6a«b

+ 2Z>cb«c + 2cac«a
A^ = a? + b^ + c^ + 2ab cos ('a, b) + 2 6 c cos (b, c)

+ 2 ca cos (c, a).

This formula is analogous to the one in Cartesian geometry

which gives the distance between two points referred to

oblique axes. If the points be x^, y^, Zj, and x^, y^, z^ the

distance squared is

+ 2 (332 - *i) (2^2 - yd COS (X, Y)

+ 2(y2-yi)(22-2i)cos(F,^

+ 2 (32 -^l) (3=2 - ^li COS (JZ,X).

31.] Definition : The skew prodiict of the vector A into

the vector B is the vector quantity C whose direction is the

normal upon that side of the plane of A and B on which
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rotation from A to B through an angle of less than one

hundred and eighty degrees appears positive or counter-

clockwise ; and whose magnitude is obtained by multiplying

the product of the magnitudes of A and B by the sine of the

angle from A to B.

The direction of A X B may also be defined as that in

which an ordinary right-handed

screw advances as it turns so as g -;'

to carry A toward B (Fig. 18).

The skew product is denoted by

a cross as the direct product was

AXE
B

\ZIZ
by a dot It is written Fig. 18.

C = AxB

and read A cross B. For this reason it is often called the cross

product. More frequently, however, it is called the vector prod-

uct, owing to the fact that it is a vector quantity and in con-

trast with the direct or scalar product whose value is scalar.

The vector product is by definition

C = A X B = .4 JB sin (A,B) c, (9)

when A and B are the magnitudes of A and B respectively and

where c is a unit vector in the direction of C. In case A and

B are unit vectors the skew product A X B reduces to the

unit vector c multiplied by the sine of the angle from A to B.

Obviously also if either vector A or B is multiplied by a scalar

X their product is multiplied by that scalar.

(a; A) X B = A X (xB) = xC.

If A and B are parallel the angle between them is either zero

or one hundred and eighty degrees. In either case the sine

vanishes and consequently the vector product A X B is a null

vector. And conversely if A X B is zero

A B sin (A, B) = 0.
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Hence A ov B or sin (A, B) is zero. Thus the condition for

parallelism of two vectors neither of which vanishes is A X B

= 0. As a corollary the vector product of any vector into

itself vanishes.

32.] The vector product of two vectors will appear wher-

ever the sine of the included angle is of importance, just as

the scalar product did in the case of the cosine. The two prod-

ucts are in a certain sense complementary. They have been

denoted by the two common signs of multiplication, the dot

and the cross. In vector analysis they occupy the place held

by the trigonometric functions of scalar analysis. They are

at the same time amenable to algebraic treatment, as will be

seen later. At present a few uses of the vector product may

be cited.

If A and B (Fig. 18) are the two adjacent sides of a parallel-

ogram the vector product

C = A X B = ^ 5 sin (A, B) c

represents the area of that parallelogram in magnitude and

direction (Art. 25). This geometric representation of A X B

is of such common occurrence and importance that it might

well be taken as the definition of the product. From it the

trigonometric definition follows at once. The vector product

appears in mechanics in connection with couples. If A and

— A are two forces forming a couple, the moment of the

couple is A X B provided only that B is a vector drawn from

any point of A to any point of — A. The product makes its

appearance again in considering the velocities of the individ-

ual particles of a body which is rotating with an angular ve-

locity given in magnitude and direction by A. If R be the

radius vector drawn from any point of the axis of rotation A
the product A X R will give the velocity of the extremity of

R (Art. 51). This velocity is perpendicular alike to the axis

of rotation and to the radius vector R.
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33.] The vector products A X B and B X A are not the

same. They are in fact the negatives of each other. For if

rotation from A to B appear positive on one side of the plane

of A and B, rotation from B to A will appear positive on the

other. Hence A X B is the normal to the plane of A and B
upon that side opposite to the one upon which B x A is the

normal. The magnitudes of A X B and B X A are the same.

Hence
AxB = -BxA. (10)

The factors in a vector prodtoct can he interchanged if and only

if the sign of the product be reversed.

This is the first instance in which the laws of operation in

vector analysis differ essentially from those of scalar analy-

sis. It may be that at first this change of sign which must

accompany the interchange of factors in a vector product wiU

give rise to some difficulty and confusion. Changes similar to

this are, however, very familiar. No one would think of inter-

changing the order of x and y in the expression sin (a: — y)

without prefixing the negative sign to the result. Thus

sin Qy — x) = — sin (x — y"),

although the sign is not required for the case of the cosine.

cos (y — a;) = cos ( a; — y).

Again if the cyclic order of the letters ABG va. the area of a

triangle be changed, the area wiU be changed in sign (Art.

25).

ABG = -ACB.
In the same manner this reversal of sign, which occurs

when the order of the factors in a vector product is reversed,

will appear after a little practice and acquaintance just as

natural and convenient as it is necessary.

34.] The distributive law of multiplication holds in the

case of vector products just as in ordinary algebra— except
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that the order of the factors must be carefully maintained'

when expanding.

(A + B)xC = AxC + BxC. (11)

A very simple proof may be given by making use of the ideas

developed in Art. 26. Suppose that C

is not coplanar with A and B. Let A

and B be two sides of a triangle taken

in order. Then — (A + B) will be the

third side (Fig. 19). Form the prism

of which this triangle is the base and

of which C is the slant height or edge.

The areas of the lateral faces of this

prism are

A X C, B X C, - (A + B) X C.

The areas of the bases are

i (A X B) and -
^ (A X B).

But the sum of all the faces of the prism is zero; for the

prism is a closed surface. Hence

AxC + BxC-(A + B)xC + |(AxB)-i(AxB) = 0,

A X C + B X C - (A + B) X C = 0,
"'

or A X C + B X C = (A + B) X C. (11)

The relation is therefore proved in case C is non-coplanar

with A and B. Should C be coplanar with A and B, choose D,

any vector out of that plane. Then C + D also will lie out of

that plane. Hence by (11)

A X (C + D) + B X (C + D) = (A + B) X (C + D).

Since the three vectors in each set A, C, D, and B, C, D, and

A + B, C, D will be non-coplanar if D is properly chosen, the

products may be expanded.
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AxC+AxD+BxC+BxD
= (A + B) X C + (A + B) X D.

But by (11) A>(b + B X D = (A + B) X D.

Hence AxC + BxC=(A + B)xC.

This completes the demonstration. The distributive law holds

for a vector product. The generalization is immediate.

(A + B+---)x(P + a+--) = AxP + Axa + --- (11)'

+ BxP + BxQ+ •••

+

35.] The vector products of the three unit vectors i, j, k are

easily seen by means of Art. 17 to be

ixi = jxj = kxk = 0,

i X j = - j X i = k, (12)

j xk=:-kxj = i,

kxi = — ixk =j.

The skew product of two equal ^ vectors of the system i, j, k

is zero. The product of two unequal vectora is the third taken

with the positive sign if the vectors follow in the cyclic order

i j k but with the negative sign if they do not.

If two vectors A and fi are expressed in terms of i, j, k,

their vector product may be found by expanding according

to the distributive law and substituting.

A = -4ii + A^l + ^ak,

B = ^ii + 52J + -B3k,

A x B = (^1 i + ^2 j + ^gk) X (B^i + B^j + B^k)

= AiBj^i xi + A^B^ixj + A^B^ixk
+ A^BiJxi + A^B^l X j + ^2 -^3 j X k,

+ ^g^ik X i + -^g^a^ X j + -^s-^s^^ X ^•

Hence A x B = (^2-^8 - ^8-^2) i + (-^8^1 - ^1 ^3) J

+ {A^B^-A^B,)ls..

1 This follows also from the fact that the sign is changed when the order of

factors is reversed. Hence j X j = — j X j = 0.

6
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This may be written in the form of a determinant as

Ax B =
1 J

B.

k

B,^1 -"2 -"3

The formulae for the sine and cosine of the sum or dif-

ference of two angles follow immediately from the dot and

cross products. Let a and b be two unit vectors lying in the

i j -plane.' If x be the angle that a makes with i, and y the

angle b makes with i, then

a = cos a; i + sin a; j,

/I b = cos y 1 + sin y j,

a . b = cos (a, b) = cos (y — x),

a . b = cos X cos y + sin x sin y.

cos (y — x) = cos y cos x + sin y sin x.

b' = cos y i — sin 2/ j,

a . b' = cos (a, b') — cos (y + x).

cos (y + x) = cos y cos X — sin y sin a;.

a X b = k sin (a, b) = k sin Q/ — x),

a X b = k (sin y cos' x — sin x cos y").

sin (y — x^ = sin y cos x — sin x cos y.

a X b' =: k sin (a, b') — k sin (y + x'),

a X b' = k (sin y cos x + sin x cos «/).

sin (jj + x^ — sin y cos x + sin a; cos y.

Hence

If

Hence

Hence

Hence

If I, m, n and V, m', n' are the direction cosines of two

unit vectors a and a' referred to JT, T, Z, then

a = H + mj + mk,

a' = Z'i + m'j + 5i'k,

a . a' = cos (a, a') = n' + m m' + m w.',

as has already been shown in Art. 29. The familiar formula

for the square of the sine of the angle between a and a' may

be foimd.
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a X a' = sin (a, a') e = (mm' — m'w) i + (nV — n' I) \

+ Qm' — I'm) k,

where e is a unit vector perpendicular to a and a'.

(a X a') • (a x a') = sin^ (a, a') e • e = sin^ (a, a').

sin2 (a,a') = (mn'— m'ny+ {nV— n' ly +(^i,m' — I' my.

This leads to an easy way of establishing the useful identity

(m7i.'-m'w)2 + (nV -n'iy+ (Im' — I' m)^

= (Z2 + m2 + w2) (;'2 + to'2 + n'^)^(il I' + mm' + nn'y.

Products of More than Two Vectors

36.] Up to this point nothing has been said concerning

products in which the number of vectors is greater than

two. If three vectors are combined into a product the result

is called a triple product. Next to the simple products

A»B and AxB the triple products are the most important.

All higher products may be reduced to them.

The simplest triple product is formed by multiplying the

scalar product of two vectors A and B into a third C as

(A-B) C.

This in reality does not differ essentially from scalar multi-

plication (Art. 6). The scalar in this case merely happens to

be the scalar product of the two vectors A and B. Moreover

inasmuch as two vectors cannot stand side by side in the

form of a product as BC without either a dot or a cross to

unite them, the parenthesis in (A»B) C is superfluous. The

expression .
^^ n

cannot be interpreted in any other way ^ than as the product

of the vector C by the scalar A-B.

1 Later (Chap. V.) the product BC, where no sign either dot or cross occurs,

will be defined. But it will be seen there that (A«B) C and A« (B C) are identical

and consequently no ambiguity can arise from the omission of the parenthesis.
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37.] The second triple product is the scalar product of

two vectors, of which one is itself a vector product, as

A'(BxC) or (AxB).C.

This sort of product has a scalar value and consequently is

often called the scalar triple prod-

uct. Its properties are perhaps most

easily deduced from its commonest

geometi'ical interpretation. Let A, B,

and C be any three vectors drawn

from the same origin (Fig. 20).

Then BxC is the area of the par-

allelogram of which B and C are two adjacent sides. The

^°^^^^ A-(BxC) = V (14)

will therefore be the volume of the parallelepiped of which

BxC is the base and A the slant height or edge. See Art. 28.

This volume v is positive if A and BxC lie upon the same

side of the B C-plane ; but negative if they lie on opposite

sides. In other words if A, B, C form a right-handed or

positive system of three vectors the scalar A*(BxC) is posi-

tive; but if they form a left-handed or negative system, it

is negative.

In case A, B, and C are coplanar this volume will be

neither positive nor negative but zero. And conversely if

the volume is zero the three edges A, B, C of the parallelo-

piped must lie in one plane. Hence the necessary and suffi-^

cient condition for the coplanarity of three vectors A, B, C Tione

of which vanishes is A- (BxC) = 0. As a corollary the scalar

triple product of three vectors of which two are equal or

coUinear must vanish ; for any two vectors are coplanar.

The two products A.(BxC) and (AxB).C are equal to the

same volume v of the parallelopiped whose concurrent edges

are A, B, C. The sign of the volume is the same in both

cases. Hence ,. .„v „ . /„ ..^
(AxB).C = A.(BxC) = V. (14)'
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This equality may be stated as a rule of operation. The dot

and the cross in a scalar triple product may be interchanged

without altering the valu£ of the product.

It may also be seen that the vectors A, B, C may be per-

muted oyclioly without altering the product.

A-(BxC) = B.(CxA) = C.(AxB). (15)

For each of the expressions gives the volume of the same
parallelopiped and that volume will have in each case the

same sign, because if A is upon the positive side of the B C-

plane, B will be on the positive side of the C A-plane and C
upon the positive side of the A B-plane. The triple product

may therefore have any one of six equivalent forms

c
A.(BxC) = B.(CxA) =;it.(AxB) (15)'

= (AxB).C = (BxC).A = (CxA).B.

If however the cyclic order of the letters is changed the

product will change sign.

A<BxC) = - A<CxB). (16)

This may be seen from the figure or from the fact that

BxC = — CxB.

Hence : A scalar triple product is not altered by interchanging

the dot or the cross or by permuting cyclicly the order of the

vectors, but it is reversed in sign if the cyclic order be changed.

38.] A word is necessary upon the subject of parentheses

in this triple product. Can they be omitted without am-

biguity ? They can. The expression

A'BxC

can have only the one interpretation

I A.(BXC).

For the expression (A«B)xC is meaningless. It is impos-

sible to form the skewj product of a scalar A»B and" a vector
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C. Hence as there is only one way in which A»BxC may

be interpreted, no confusion can arise from omitting the

parentheses. Furthermore owing to the fact that there are

six scalar triple products of A, B, and C which have the same

value and are consequently generally not worth distinguish-

ing the one from another, it is often convenient to use the

symbol
[ABC]

to denote any one of the six equal products.

[A B C] = A^BxC = B-CxA = C-AxB

= AxB.C = BxC.A = CxA'B ^ ^

then [A B C] = - [A C B]. (16)'

The scalar triple products of the three unit vectors i, j, k

all vanish except the two which contain the three different

vectors.

[ijk] = _[ikj] = l. (17)

Hence if three vectors A, B, C be expressed in terms of i, j, k'

as

B = ^1 i + ^2 j + ^3 k,

then [A B C] = A, B, C, + B, C, A, + C, A, B,

-AB,C,-B,C,A,-C,A,B,. ^^^^

This may be obtained by actually performing the multiplica-

tions which are indicated in the triple product. The result

may be written in the form of a determinant.^

A A ^3
[A B C] = B^ B, B, (18)' .

1 This is the formula given in solid analytic geometry for the volume of a
tetrahedron one of whose vertices is at the origin. For a more general formula
see exercises.

A
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If more generally A, B, C are expressed in terms of any three

non-coplanar vectors a, b, c which are not necessarily unit

vectors,

A = «! a + flig ^ + '^3 c

B = 6j. a + 62 ^ + ^3

C = Cj a + C2 b + Cg c

where osj, a^, a^; 6j, l^, b^; and Cj, c^, Cg are certain con-

stants, then

[A B C] = («! 62 "3 + ^1 "2 as + "1 ^2 ^3 .jQs

— «! &3 C2 - &! Cg ffig - Ci «3 ^2) [a t c]. ^

or [ABC] = [a b c] (19)'&i 62 ^s

"1 "2 "3

39.] The third type of triple product is the vector product

of two vectors of which one is itself a vector product. Such

are

Ax(BxC) and (AxB)xC.

The vector Ax(BxC) is perpendicular to A and to (BxC).

But (BxC) is perpendicular to the plane of B and C. Hence

Ax.(BxC), being perpendicular to (BxC) must lie in the

plane of B and C and thus take the form

Ax(BxC) = a; B + ^ C,

where x and y are two scalars. In like manner also the

vector (AxB)xC, being perpendicular to (AxB) must lie

in the plane of A and B. Hence it will be of the form

(AxB)xC = mA + toB

where m and % are two scalars. From this it is evident that

in general

(AxB)xC is not equal to Ax (BxC).

The parentheses therefore cannot be removed or inter-

changed. It is essential to know which cross product is
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formed first and which second. This product is termed the

vector triple product in contrast to the scalar triple product.

The vector triple product may be used to express that com-

ponent of a vector B which is perpendicular to a given vector

A. This geometric use of the product is valuable not only in

itself but for the light it sheds

upon the properties of the product.

Let A (Fig. 21) be a given vector

and B another vector whose com-

ponents parallel and perpendicular

to A are to be found. Let the

components of B parallel and per-

pendicular to A be B ' and B " re-

spectively. Draw A and B from a

common origin. The product AxB
is perpendicular to the plane of A and B. The product

"Ax (AxB) lies in the plane of A and B. It is furthermore

„,,4ie-rpendicular to A. Hence it is coUinear with B". An
examination of the figure • will show that the direction of

Ax (AxB) is opposite to that of B". Hence

8H.A&)-^" Ax(AxB) = -cB",

AXB
axb'
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B'=_A (21)

B = B' + B'-^A-^^^> (22) '

A'A A«A

40.] The vector triple product Ax (BxC) may be expressed

as the sum of two terms as

Ax(BxC)=A.C B-A.B C

In the first place consider the product when two of the

vectors are the same. By equation (22)

A.A B = A-B A - Ax(AxB) (22)

or Ax(AxB) = A.B A - A-A B (23)

This proves the formula in case two vectors are the same.

To prove it in general express A in terms of the three

non-coplanar vectors B, C, and BxC.

A = 6B + cC + a (BxC), (I)

where a, i, c are scalar constants. Then

Ax(BxC) = 6Bx(BxC) + c Cx(BxC) (II)

+ a (BxC)x(BxC).

The vector product of any vector by itself is zero. Hence

(BxC)x(BxC) =
Ax(BxC) = 6Bx(BxC) + c Cx(BxC). (II)'

By (23) Bx(BxC) = B-C B - B-B C

Cx(BxC) = - Cx(CxB) = - C-B C + C-C B.

Hence Ax(BxC) = [(SB-C + cC-C)B- (6B.B + cC.B)C]. (II)"

But from (I) A-B = JB-B + cC'B + a (BxC).B

and A^C = bB-C + cC'C + a (BxC).C.

By Art. 37 (BxC).B = and (BxC).C = 0.

Hence A-B = JB-B + cC^B,

A-C = 5B.C + cC'C.
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Substituting these values in (II)",

Ax(BxC) = A-C B - A.B C (24)

The relation is therefore proved for any three vectors A, B, C.

Another method of giving the demonstration is as follows.

It was shown that the vector triple product Ax(BxC) was

of the form
Ax(BxC) =:a3B + 3/C.

Since Ax(XxC) is perpendicular to A, the direct product of

it by A is zero. Hence

A.[Ax(BxC)] = a;A.B + yA'C =
and X :y — A»C .• — A«B.

Hence Ax(BxC) — n (A-C B — A-B C),

where w is a scalar constant. It remains to show n = \.

Multiply by B.

Ax(BxC).B = n (A.C B-B -A.B C.B).

The scalar triple product allows an interchange of dot and^

cross. Hence

Ax(BxC).B = A.(BxC)xB = - A.[Bx(BxC)],

if the order of the factors (BxC) and B be inverted.

-A.[Bx(BxC)]=-A.[B.C B-B.BC]
= -B.C A.B + B.B A.C.

Hence n = l and Ax(BxC) = A.C B - A.B C. (24)

From the throe letters A, B, C by different arrangements,

four allied products in each of which B and C are included in

parentheses may be formed. These are

Ax(BxC), Ax(CxB), (CxB)xA, (BxC)xA.

As a vector product changes its sign whenever the order of

two factors is interchanged, the above products evidently

satisfy the equations

Ax (BxC) =-Ax(CxB) = (CxB)xA = - (BxC)xA.
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The expansion for a vector triple product in wMch the

parenthesis comes first may therefore be obtained directly

from that already found when the parenthesis comes last.

(AxB)xC = -Cx(AxB) = -CB A + C-A B.

The formulae then become X"^
/

Ax(BxC) = A.C B - A.B C /_ i? (24) -

and (AxB)xC =?^'^ - CB A. (24)'

These reduction formulae are of such constant occurrence and

great importance that they should be committed to memory.

Their content may be stated in the following rule. To expand

a vector triple product first multiply the exterior factor into the

remoter term in the parenthesis td form a scalar coefficient for

the nearer one, then multiply the exterior factor into the nearer

term in the parenthesis to form a scalar coefficient for the

remoter one, and subtract this result from the first.

41. J As far as the practical applications of vector analysis

are concerned, one can generally get along without any

formulas more complicated than that for the vector triple

product. But it is frequently more convenient to have at

hand other reduction formulae of which all may be derived

simply by making use of the expansion for the triple product

Ax(BxC) and of the rules of operation with the triple pro-

duct A'BxC.

To reduce a scalar product of two vectors each of which

is itself a vector product of two vectors, as

(AxB).(CxD).

Let this be regarded as a scalar triple product of the three

vectors A, B, and CxD— thus

AxB.(CxD).

Interchange the dot and the cross.



(AxB).(CxD) = (25)'

76 VECTOR ANALYSIS

AxB.(CxD) = A.Bx(CxD)

Bx(CxD) = B.D C - B-C D.

Hence (AxB).(CxD) = A-C B.D - A.D B-C. (25)

This may be written in determinantal form.

A-C A.D

B.C B.D

If A and D be called the extremes ; B and C the means ; A
and C the antecedents ; B and D the consequents in this

product according to the familiar usage in proportions, then

the expansion may be stated in words. The scalar product

of two vector products is equal to the (scalar) product of the

antecedents times the (scalar) product of the consequents

diminished by the (scalar) product of the means times the

(scalar) product of the extremes.

To reduce a vector product of two vectors each of which

is itself a vector product of two vectors, as ,'^

(AxB)x(CxD).

Let CxD = E. The product becomes ' ^ "'^ ^^
^ ' ,^-, 'l

(AxB)xE = A.E B - B.E A.

Substituting the value of E back into the equation :

(AxB)x(CxD) = (A.CxD)B - (B.CxD) A. (26)

Let F — AxB. The product then becomes

rx(cxD)==r.D c-r.c D
(AxB)x(CxD) = (AxB.D)C - (AxB.C) D. (26)'

By equating these two equivalent results and transposing

aU the terms to one side of the equation,

[B C D] A - [C D A] B + [D A B] C - [A B C] D = 0. (27)

This is an equation with scalar coefficients between the four

vectors A, B, C, D. There is in general only one such equar
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tion, because any one of the vectors can be expressed in only-

one way in terms of the other three : thus the scalar coeffi-

cients of that equation which exists between four vectors are

found to be nothing but the four scalar triple products of

those vectors taken three at a time. The equation may also

be written in the form

[A B ^D| = [B C D] a + [C a D] B + [A B D] C. (27)'

More examples of reduction formulae, of which some are

important, are given among the exercises at the end of the

chapter. In view of these it becomes fairly obvious that

the combination of any number of vectors connected in

any legitimate way by dots and crosses or the product of any

number of such combinations can be ultimately reduced to

a sum of terms each of which contains only one cross at most.

The proof of this theorem depends solely upon analyzing the

possible combinations of vectors and showing that they all

fall under the reduction formulae in such a way that the

crosses may be removed two at a time until not more than

one remains.

* 42.] The formulae developed in the foregoing article have

interesting geometric interpretations. They also afford a

simple means of deducing the formulae of Spherical Trigo-

nometry. These do not occur in the vector analysis proper.

Their place is taken by the two quadruple products,

(AxB)-(CxD) = A-C B.D - B-C A-D (25)

and (AxB)x(CxD) = [ACD] B - [BCD] A

= [ABD] C - [ABC] D, (26)

which are now to be interpreted.

Let a unit sphere (Fig. 22) be given. Let the vectors

A, B, C, D be unit vectors drawn from a common origin, the

centre of the sphere, and terminating in the surface of the

sphere at the points A, B, 0, D. The great circular arcs
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A£, AG,. etc., give the angles between the vectors A and B,

A and C, etc. The points A,B,C,D determine a quadrilateral

upon the sphere. A G and £D are one

pair of opposite sides ; AD and B G, the

other. A B and GD are the diagonals.

(AxB).(CxD) = A-C B.D - A-D B-C

AxB = sin (A,B), CxD = sin(C, D).

The angle between AxB and CxD is the

angle between the normals to the AB-

and CD-planes. This is the same as

the angle between the planes themselves. Let it be denoted

by X. Then

(AxB).(CxD) = sin (A,B) sin (C,D) cos a;.

The angles (A, B), (C, D) may be replaced by the great

circular arcs AB, GD which measure them. Then

(AxB).(CxD) =svn. AB sin GD cos x,

A'C B'D — A.D B'C — cos AG cos BD — cos AD cos BC.

Fig. 22.

Hence

sin A B sin CD cos x = cos A C cos B D cos A D cos B G.

In words : The product of the cosines of two opposite sides

of a spherical quadrilateral less the product of the cosines of

the other two opposite sides is equal to the product of the

sines of the diagonals multiplied by the

cosine of the angle betw&en them. This

theorem is credited to Gauss.

Let A, B, G (Fig. 23) be a spherical tri-

angle, the sides of which are arcs of great

circles. Let the sides be denoted by a, h, c

respectively. Let A, B, C be the unit vectors

drawn from the center of the sphere to the points A, B, G.

Furthermore let p^, p^, p^ t>e the great circular arcs dropped

Fig. 23.
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perpendicularly from the vertices A, B, C to the sides a, 6, e.

Interpret the formula

(AxB).(CxA) = A-C B-A - B-C A.A.

(AxB) = sin (A, B) = sin c, (CxA) = sin (C, A) = sin h.

Then (AxB) .(CxA) = sin c sin b cos x,

where x is the angle between AxB and CxA. This

angle is equal to the angle between the plane of A, B and the

plane of C, A. It is, however, not the interior angle A which

is one of the angles of the triangle : but it is the exterior

angle 180° — A, as an examination of the figure will show.

(AxB)^(CxA) = sin c sin b cos (180° - A)
= — sin c sin b cos A

A«C B»A — B'C A'A = cos b cos c — cos a 1.

By equating the results and transposing,

cos a = cos b cos c — sin b sin c cos A
cos b — cos c cos a ^ sin c sin a cos B
cos c = cos a cos b + sin a sin b cos G.

The last two may be obtained by cyclic permutation of the

letters or from the identities

(BxC):^(AxB) = B-A C-B - C-A,

(CxA):^(BxC) = C-B A-C - B-C.

Next interpret the identity (AxB)x(CxD) in the special

cases in which one of the vectors is repeated.

(AxB)x(AxC) = [ABC]A.

Let the three vectors a, b, c be unit vectors in the direction of

BxC, CxA, AxB respectively. Then

AxB = c sin c, AxC = — b sin 6

(AxB)x(AxC) = — cxb sin c sin 6 = A sin c sin b sin A

[A B C] = (AxB).C = cC sin c = cos (90° -p„) sin c

[A B C] A = sin c sin p^ •
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By equating the results and cancelling the common factor,

sinpc = sin 6 sin A
sin^o = sin c sin B
sin Pi — sin a sin C.

The last two may be obtained by cyclic permutation of the

letters. The formulse give the sines of the altitudes of the

triangle in terms of the sines of the angle and sides. Again

write
(AxB)x(AxC) = [AB C] A

(BxC)x(BxA) = [BCA]B

(CxA)x(CxB) = [CAB]C.

Hence sin c sin & sin ^ = [A B C]

sin a sin c sin ^ = [B C A]

sin b sin a sin G= [C A B].

The expressions [ABC], [BCA], [CAB] are equal. Equate

the results in pairs and the formulse

sin h sin ^ = sin a sin B
sin c sin ^ = sin b sin

sin a sin = sin c sin A

are obtained. These may be written in a single line,

sin A sin B sin

sin a sin b sin c

The formulse of Plane Trigonometry are even more easy to

obtain. li A B Che a, triangle, the sum of the sides taken

as vectors is zero— for the triangle is a closed polygon.

From this equation

a + b + =

almost all the elementaiy formulse follow immediately. It

is to be noticed that the angles from a to b, from b to c, from
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to a are not the interior angles A, £, C, but the exterior

angles 180°-^, 180° -5, 180° - C.

— a = 1) + c

a^a = (b + c).(b + c) = b^b + c-c + 2b^5.

If a, 6, c be the length of the sides a, b, c, this becomes

a^ = h^ + c^-2bccosA
&2=:c2 + a^-2cacoaB
c2 = a2 + 62 _ 2 a J cos C.

The last two are obtained in a manner similar to the first

one or by cyclic permutation of the letters.

The area of the triangle is

2axb=:2bxc = 2cxa =

2 a & sin C = 2 6 c sin ^ =^casm B.

If each of the last three equalities be divided by the product

\ ah c, the fundamental relation

sin A sin B sin C
a h c

is obtained. Another formula for the area may be found from

the product
(bxc).(bxc) = (exa).(axb)

2 Area (6 c sin A) = (ca sin B) (a b sin C)

a^ sin -B sin G
2 Area =

sin^

Beciprocal Systems of Three Vectors. Solution of Equations

43.] The problem of expressing any vector r in terms of

three non-coplanar vectors a, b, c may be solved as follows.

Let
r = aa+6b + cc

6
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where a, h, c are tliree scalar constants to be determined.

Multiply by • b X c.

r.fexc = a a-bxc + b b'bxc + cc-bxc

or [r b e] = a [a b c].

In like manner by multiplying the equation by • c X a and

• a X b the coefficients h and c may be found.

[r c a] = & [b c a]

[r a b] = c [c a b]

Hence r = ^^^ a + f^ b+&^ c. (28)
[a be] [be a] [c a b]

The denominators are all equal. Hence this gives the

equation

[a b e] r — [b c r] a + [c r a] b — [r a b] c =

which must exist between the four vectors r, a, b, c.

The equation may also be written

r-bxc r«cxa, r«axb
[a be] [a b c] [a b ej

bxc cxa, axb
or r = r • ^ , -, a + r • b + r • c.

[a be] [a b c] [a b e]

The three vectors which appear here multiplied by r», namely

bxc exa axb
[a be] [a b e] [a b c]

are very important. They are perpendicular respectively to

the planes of b and e, e and a, a and b. They occur over and

over again in a large number of important relations. For

this reason they merit a distinctive name and notation.

Definition : The system of three vectors

bxc cxa axb
» >

[abe] [abc] [abe]
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which are found by dividing the three vector products b x c,

c X a, a X b of three non-coplanar vectors a, b, c by the scalar

product [ a b c J is called the reciprocal system to a, b, c.

The word non-eoplanar is important. If a, b, c were co-

planar the scalar triple product [a b c] would vanish and

consequently the fractions

bxc cxa axb
[a be] [a b c] [a b c]

would all become meaningless. Three coplanar vectors have

no reciprocal system. This must be carefully remembered.

Hereafter when the term reciprocal system is used, it will be

understood that the three vectors a, b, c are not coplanar.

The system of thi-ee vectors reciprocal to system a, b, c

wUl be denoted by primes as a', b', c'-

bxo ,, cxa , axb (29)

[a b c] - [a b c] [a b c]

The expression for r reduces then to the very simple form

r = r.a' a + r.b' b + r-c' c. (30)

The vector r may be expressed in terms of the reciprocal

system a', b', c' instead of in terms of a, b, c. In the first

place it is necessary to note that if a, b, c are non-coplanar,

a', b', c' which are the normals to the planes of b and c,

c and a, a and b must also be non-coplanar. Hence r may

be expressed in terms of them by means of proper scalar

coefficients x, y, z.

T = X &' + yh' + z c'

or [abc]r = a;bxc4-2/cxa + 3axb.

Multiply successively by -a, ^b, -c. This gives

[a b c] r-a = a; [b c a], x = rta

[abcjr.b = y [cab], y = r.b

[a b c] r»c = a [a b c], z = r»c

Hence r = r-aa' H- r-bb' -f r.cc'. (31)
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44.] If a', b', c' be the system reciprocal to a, b, c the

scalar product of any vector of the reciprocal system into the

corresponding vector of the given system is unity;, but

the product of two non-corresponding vectors is zero. That is

a'.a = b'-b = c'.c = l (32)

a'«b = a'»c = b'»a = b'«c = c'»a = c'«b = 0.

This may be seen most easily by expressing a', b', c' in

terms of themselves according to the formula (31)

r = r»a a' + r-b b' + r«c c'.

Hence a' = a'-aa' + a'«bb' + a'»c c'

b' = b'.aa' + b'.bb' + b'-cc'

c' = o'«aa' + c'»bb' + c'.cc'.

Since a', b', c' are non-coplanar the corresponding coeffi-

cients on the two sides of each of these three equations must

be equal. Hence from the first

1 = a'.a = a'.b = a' c.

From the second = b'«a l = b'«b = b'«c.

From the third = c'.a = c'.b l = c'.c.

This proves the relations. They may also be proved

directly from the definitions of a', b', c'.

,
bxc bxc-a [be a]

a • a = • a = = = 1
[a b c] [a b c ] [a b o]

, ^ bxc, bxcb
a'.b = . b = = =0

[a be] [a b cj [a b c]

and so forth.

Conversely if two sets of three vectors each, say A, B, C,

and a, b, c, satisfy the relations

, A.a = B-b = C'e = 1

A.^ = A-e = B.a = B-c = C^a = C^b =
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then the set A, B, C is the system reciprocal to a, b, c.

By reasoning similar to that before

A = A.a a' + A-b b' + A^c o'

B = B.aa' + B.bb' + B-c c'

C = C.aa' + C.bb' + C-c c'-

Substituting in these equations the given relations the re-

sult is

A = a', B = b', C = c'.

Henoe

Theorem : The necessary and sufficient conditions that the

set of vectors a', b', c' be the reciprocals of a, b, c is that

they satisfy the equations

a'.a = b'.b = c'.c = 1 (32)

a'.b = a'.c = b'.a = b'.c = c'.a = c'.b = 0.

As these equations are perfectly symmetrical with respect

to a', b', c' and a, b, c it is evident that the system a, b, c may
be looked upon as the reciprocal of the system a', b', c' just

as the system a', b', c' may be regarded as the reciprocal of

a, b, c. That is to say,

Theorem: If a', b', c' be the reciprocal system of a, b, c,

then a, b, c will be the reciprocal system of a', b', c'.

Vj^^ c^x a^
^

_a'xh' (29)'
^~

[a'b'c']' ~[a'b'c']' " " [a'b'c']

*

These relations may be demonstrated directly from the

definitions of a', b', c'. The demonstration is straightfor-

ward, but rather long and tedious as it depends on compli-

cated reduction formulse. The proof given above is as short

as could be desired. The relations between a', b', c' and

a, b, c are symmetrical and hence if a', b', c' is the reciprocal

system of a, b, c, then a, b, c must be the reciprocal system of

a', b', c'.
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45.] Theorem : If a', b', c' and a, b, c be reciprocal systems

the scalar triple products [a'b'c'] and [a b c] are numerical

reciprocals. That is

[a'b'c'] [abo] = l (33)

r '1,' n r ^ X ° cxa axb l

-* "^"[[alJc] [abc] [abc]J

= ———-5 [bxc cxa axb].
[abcj^*-

[bxc cxa axb] = (bxc)x(cxa)<axb).

(bxc) X (cxa) = [abc]e.

[bxc cxa axb] = [abc] caxb = [a be] 2.

1 . . _„ 1

But

Hence

Hence [a'b'c'] = [abc] 2_ (33)'
[a b c] ^ ""

-^ [a b c]

By means of this relation between [a' b' c'] and [a b c] it

is possible to prove an important reduction formula,

(P.axR)(A.BxC) =
P-A
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Hence [PQR] [ABC] =
P.A P.B P.C

Q,.A Q>B Q,>C

B<A B-B B,>G

The system of three unit vectors i, j, k is its own reciprocal

system.

For tliis reason the primes i', j', k' are not needed to denote

a system of vectors reciprocal to i, j, k. The primes will

therefore be used in the future to denote another set of rect-

angular axes i, j, k , just as X', Y', Z' are used to denote a

set of axes different from X, Y, Z.

The only systems ofthree vectors which are their own reciprocals

are the right-handed and left-handed systems of three unit

vectors. That is the system i, j, k and the system i, j, — k.

Let A, B, C be a set of vectors which is its own reciprocal.

Then by (32)
A.A = B.B = C-C = 1.

Hence the vectors are all unit vectors.

A-B = A.C = 0.

Hence A is perpendicular to B and C.

B.A = B.C = 0.

Hence B is perpendicular to A and C.

C'A = C'B = 0.

Hence C is perpendicular to A and B.

Hence A, B, C must be a system like i, j, k or like i, j, — k.

* 46.] A scalar equation of the first degree in a vector r is

an equation in each term of which r occurs not more than

once. The value of each term must be scalar. As an exam-

ple of such an equation the following may be given.

a a-bxr + &(exd).(exr) + c{'t + d = 0,
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where a, b, c, d, e, f are known vectors ; and a, h, c, d, known

scalars. Obviously any scalar equation of the first degree in

an unknown vector r may be reduced to the form

r«A = a

where A is a known vector ; and a, a known scalar. To ac-

complish this result in the case of the given equation proceed

as foUows.
a axb-r + h (cxd)xe.r + cf-i + d =
{a axb + b (cxd)xe + ci}-i = — d.

In more complicated forms it may be necessary to make use

of various reduction formulae before the equation can be made

to take the desired form,

r«A = a.

As a vector has three degrees of freedom it is clear that one

scalar equation is insufficient to determine a vector. Three

scalar equations are necessary.

The geometric interpretation of the equa-

tion

r.A = a (36)

is interesting. Let r be a variable vector

(Fig. 24) drawn from a fixed origin. Let

A be a fixed vector drawn from the same

origin. The equation then becomes

r A cos (r, A) = a,

or rcos(r,A)=—

,

.Jx.

if r be the magnitude of r ; and A that of A. The expression

r cos (r, A)

is the projection of r upon A. The equation therefore states

that the projection of r upon a certain fixed vector A must
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always be constant and equal to a/A. Consequently the ter-

minus of r must trace out a plane perpendicular to the vector

A at a distance equal to a/A from the origin. The projec-

tion upon A of any radius vector drawn from the origin to a

point of this plane is constant and equal to a/A. This gives

the following theorem.

Theorem : A scalar equation in an unknown vector may be

regarded as the equation of a plane, which is the locus of the

terminus of the unknown vector if its origin be fixed.

It is easy to see why three scalar equations in an unknown
vector determine the vector completely. Each equation de-

termines a plane in which the terminus of r must lie. The

three planes intersect in one common point. Hence one vec-

tor r is determined. The analytic solution of three scalar

equations is extremely easy. If the equations are

r«A = a

r.B = b (37)

r«C = c,

it is only necessary to call to mind the formula

r = r.AA' + r.BB' + r.CC'.

Hence r = a A' + & B' + c C. (38)

The solution is therefore accomplished. It is expressed in

terms A', B', C which is the reciprocal system to A, B, C. One

caution must however be observed. The vectors A, B, C will

have no reciprocal system if they are coplanar. Hence the

solution will fail. In this case, however, the three planes de-

termined by the three equations will be parallel to a line.

They will therefore either not intersect (as in the case of the

lateral faces of a triangular prism) or they will intersect in a

common line. Hence there will be either no solution for r or

there vrill be an infinite number.
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From four scalar equations

r-A = a

r.B = b (39)

r-C = c

r.D =d

the vector r may be entirely eliminated. To accomplish this

solve three of the equations and substitute the value in the

fourth.

r = a A' + 6B' + cC'

a A'.D + 6B'.D + cC'.D = c?

or a [BCD] + & [CAD] + c [ABD] = d [ABC]. (40)

* 47.] A vector equation of the first degree in an unknown

vector is an equation each term of which is a vector quantity

containing the unknown vector not more than once. Such

an equation is

(AxB)x(Cxr) + D^E-r + to r + F =0,

where A, B, C, D, E, F are known vectors, n a known scalar,

and r the unknown vector. One such equation may in gen-

eral be solved for r. That is to say, one vector equation is in

general sufficient to determine the unknown vector which is

contained in it to the first degree.

The method of solving a vector equation is to multiply it

with a dot successively by three arbitraiy known non-coplanar

vectors. Thus three scalar equations are obtained. These

may be solved by the methods of the foregoing article. In the

first place let the equation be

A a-r + B b^r + C cr = D,

where A, B, C, D, a, b, c are known vectors. No scalar coeffi-

cients are written in the terms, for they may be incorporated in

the vectors. Multiply the equation successively by A', B', C
It is understood of course that A, B, C are non-coplanar.
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a-r = D«A'

bT = D.B'

c.r = D«C'.

But r = a' a«r + b' b»r + c' o«r.

Hence r = D-A' a' + D-B' b' + D.C c'.

The solution is therefore accomplished in case A, B, C are non-

coplanar and a, b, o also non-coplanar. The special cases in

which either of these sets of three vectors is coplanar will not

be discussed here.

The most general vector equation of the first degree in an

unknown vector r contains terms of the types

A a-r, n r, Exr, D.

That is it will contain terms which consist of a known

vector multiplied by the scalar product of another known vec-

tor and the unknown vector ; terms which are scalar multi-

ples of the unknown vector; terms which are the vector

product of a known and the unknown vector ; and constant

terms. The terms of the type A a»r may always be reduced

to three in number. For the vectors a, b, c, • • • which are

multiplied into r may all be expressed in terms of three non-

coplanar vectors. Hence all the products a«r, b«r, c«r, • • •

may be expressed in terms of three. The sum of all terms of

the type A a«r therefore reduces to an expression of three

terms, as

A a«r -I- B b-r + C c-r.

The terms of the types n r and Exr may also be expressed

in this form.

ni = na.' a,'T + nh'^'T + n c'c»r

Exr = Exa' a-r 4- Exb' b»r+Exc' c-r.

Adding all these terms together the whole equation reduces

to the form
L a-r + M b.r + N c-r = K.
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This has already been solved as

r = K.L' a' + K-M' b' + K.N'c'.

The solution is in terms of three non-coplanar vectors a', b', c'.

These form the system reciprocal to a, b, c in terms of which

the products containing the unknown vector r were expressed.

* Sundry Applicatioks of Peoducts

Applications to Mechanics

48.] In the mechanics of a rigid body a force is Twt a

vector in the sense understood in this book. See Art. 3.

A force has magnitude and direction ; but it has also a line

of application. Two forces which are alike in magnitude

and direction, but which lie upon different lines in the body

do not produce the same effect. Nevertheless vectors are

sufficiently like forces to be useful in treating them.

If a number of forces i^, f j, fs, • • • act on a body at the

same point 0, the sum of the forces added as vectors is called

the resultant B.

R = fl + f2 + f3+-"

In the same way if f j, fg, f3 • • • do not act at the same point

the term resultant is still applied to the sum of these forces

added just as if they were vectors.

R = f, + f2 + f3 + ... (41)

The idea of the resultant therefore does not introduce the

line of action of a force. As far as the resultant is concerned

a force does not differ from a vector.

Definition: The moment of a force f about the point is

equal to the product of the force by the perpendicular dis-

tance from to the line of action of the force. The moment
however is best looked upon as a vector quantity. Its mag-
nitude is as defined above. Its direction is usually taken to
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be the normal on that side of the plane passed through the

point and the line f upon which the force appears to pro-

duce a tendency to rotation about the point in the positive

trigonometric direction. Another method of defining the

moment of a force { = FQ about the point is as follows

:

The moment of the force i = FQ about the point is equal

to twice the area of the triangle FQ. This includes at once

both the magnitude and direction of the moment (Art. 25).

The point F is supposed to be the origin ; and the point Q,

the terminus of the arrow which represents the force f. The

letter M will be used to denote the moment. A subscript will

be attached to designate the point about which the moment is

taken.

Mo {f}=2 0P<2.

The moment of a number of forces f j, fg, • • • is the (vector)

sum of the moments of the individual forces.

If fi = Piei, U = F^Q^...

Mo {fi, fa, • • • } = 2 (0 Pi ^i + OP2 62 + ..
.).

This is known as the total or resultant moment of the forces

fr f 2' • • •
•

49.] If f be a force acting on a body and if d be the vector

drawn from the point to any point in the line of action of

the force, the moment of the force about the point is the

vector product of d into f

.

Mo m = dxf (42)

For ix{ = df sin (d, f) e,

if e be a unit vector in the direction of dxf.

dxf = (isin(d,f)/e.

Now <?sin'(d, f) is the perpendicular distance from to f.

The magnitude of dxf is accordingly equal to this perpem

dicular distance multiplied by/, the magnitude of the force.
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This is the magnitude of the moment Mo {f}. The direction

of dxf is the same as the direction of the moment. Hence

the relation is proved.

Mo {f} = dxf.

The sum of the moments about of a number of forces

f 1, f 2,
— • acting at the same point P is equal to the moment

of the resultant R of the forces acting at that point. For let

d be the vector from to P. Then

Mo {f i} = dxf
1

Mo {i^l = dxfa

Mo {f i} + Mo {fJ + • • • = dxf 1 + dxf2 + • • • (43)

= dx(fi + fa + •••) = dxR

The total moment about 0' of any number of forces f j, f j, • • •

acting on a rigid hody is equal to the total moment of those

forces about increased by the moment about 0' of the

resultant Rq considered as acting at 0.

Mo' {f 1, f 2 , • } = Mo {f 1, fa, • • •} + Mo' {Ro \- (44)

Let d^, dj, • • • be vectors drawn from to any point in

fp fj, • • respectively. Let d^', dj', • • be the vectors drawn

from 0' to the same points in f j, f 2, • • • respectively. Let c

be the vector from to 0'. Then

di = d/ + c, da = da' + c, • • •

Mo {fi, fa, • • •} = diXf 1 + daXfa + • • •

Mo- {fi, fa, • • •? = d/xfi + da'xfa + • • •

= (di - c)xfi + (da - c)xf 2 + • • .

= diXfi+daXfa + cx(f 1 + f 2 + - • •)

But — c is the vector drawn from 0' to 0. Hence — c x f,

is the moment about 0' of a force equal in magnitude and

parallel in direction to f ^ but situated at 0. Hence
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-cx(fi+f2 + ••) = - cxRo = Mo' {Ro}.

Hence Mcy {f i,'f2. • • } = Mo {fp f 2 , • • •} + Mo' {Ho ^ (44)

The theorem is therefore proved.

The resultant R is of course the same at all points. The
subscript is attached merely to show at what point it is

supposed to act when the moment about 0' is taken. For

the point of application of R affects the value of that moment.

The scalar product of the total moment and the resultant

is the same no matter about what point the moment be taken.

In other words the product of the total moment, the result-

ant, and the cosine of the angle between them is invariant

for all .points of space.

R.Mo'{fi,f2,--}=R-Mo {fi.fa,---}

where 0' and are any two points in space. This important

relation follows immediately from the equation

Mo'{fi,f2,---}=Mc, {fi,f2,---} +Mo'{Ro}.

ForR.Mo' lfi,f2, ••}=R'Mo {fi,f2, • • •} + R • Mo' {Ro}-

But the moment of R is perpendicular to R no matter what

the point of application be. Hence

R.Mo' ^Ro} =

and the relation is proved. The variation in the total

moment due to a variation of the point about which the

moment is taken is always perpendicular to the resultant.

50.] A point 0' may be found such that the total moment

about it is parallel to the resultant. The condition for

parallelism is

RxMo' {f 1, f 2, • • •} =

RxMo' {fi,f2,---i =RxMo {fi,f2,---}

+ R X Mo' IRo I
=
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where is any point chosen at random. Replace ]IIo'.{Ro}

by its value and for brevity omit to write the f
i,

f2, • • • in the

braces { }. Then

RxMc = RxMo — Rx(cxR) = 0.

The problem is to solve this equation for c.

ExMo — R'R c + R.c R = 0.

Now R is a known quantity. Mo is also supposed to be

known. Let c be chosen in the plane through perpen-

dicular to R. Then R«c = and the equation reduces to

RxMo = R'R c

RxMo
C := •

R«R

If c be chosen equal to this vector the total moment about

the point 0', which is at a vector distance from equal to c,

will be parallel to R. Moreover, since the scalar product of

the total moment and the resultant is constant and since the

resultant itself is constant it is clear that in the case where

they are parallel the numerical value of the total moment

will be a minimum.

The total moment is unchanged by displacing the point

about which it is taken in the direction of the resultant.

For Mo' |fi,f2>---} -Mo{fi,f2, •••} - oxR.

If c = 00' is parallel to R, cxR vanishes and the moment

about 0' is equal to that about 0. Hence it is possible to

find not merely one point 0' about which the total moment

is parallel to the resultant ; but the total moment about any

point in the line drawn through ' parallel to R is parallel

to R. Furthermore the solution found in equation for c is

the only one which exists in the plane perpendicular to R—
unless the resultant R vanishes. The results that have been

obtained may be summed up as follows

:
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If any system of forces f j, f g, • • • whose resultant is not

zero act upon a rigid body, then there exists in space one

and only one line such that the total moment about any

point of it is parallel to the resultant. This line is itself

parallel to the resultant. The total moment about all points

of it is the same and is numerically less than that about any

other point in space.

This theorem is equivalent to the one which states that

any system of forces acting upon a rigid body is equivalent

to a single force (the resultant) acting in a definite line and

a couple of which the plane is perpendicular to the resultant

and of which the moment is a minimum. A system of forces

may be reduced to a single force (the resultant) acting at any

desired point of space and a couple the moment of which

(regarded as a vector quantity) is"equal to the total moment

about of the forces acting on the body. But in general the

plane of this couple will not be perpendicular to the result-

ant, nor will its moment be a minimum.

Those who would pursue the study of systems of forces

acting on a rigid body further and more thoroughly may
consult the Traits de Mechanique MatioTieUe ^ by P. Appell.

The first chapter of the first volume is entirely devoted to

the discussion of systems of forces. Appell defines a vector

as a quantity possessing magnitude, direction, and point of

application. His vectors are consequently not the same as

those used in this book. The treatment of his vectors is

carried through in the Cartesian coordinates. Each step

however may be easily converted into the notation of vector

analysis. A number of exercises is given at the close of

the chapter.

51.] Suppose a body be rotating about an axis with a con-

stant angular velocity a. The points in the body describe

circles concentric with the axes in planes perpendicular to

1 Paris, Gauthier-Villars et Fils, 1893.

7
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the axis. The velocity of any point in its circle is equal

to the product of the angular velocity and the radius of the

circle. It is therefore equal to the product of the angular

velocity and the perpendicular dis-

tance from the point to the axis.

The direction of the velocity is

perpendicular to the axis and to

the radius of the circle described

by the point.

Let a (Fig. 25) be a vector drawn

along the axis of rotation in that

direction in which a right-handed

screw would advance if turned in

Fig. 25. *^® direction in which the body is

rotating. Let the magnitude of a

be a, the angular velocity. The vector a may be taken to

represent the rotation of the body. Let r be a radius vector

drawn from any point of the axis of rotation to a point in the

body. The vector product

axr = a r sin (a, r)

is equal in magnitude and direction to the velocity v of the

terminus of r. For its direction is perpendicular to a and r

and its magnitude is the product of a and the perpendicular

distance r sin (a, r) from the point to the line a. That is

V = axr. (45)

If the body be rotating simultaneously about several axes

aj, aj, ag • • • which pass through the same point as in the

case of the gyroscope, the velocities due to the various

rotations are „ _ „ s,,Vj — a^xri

's — *3-'^'^8
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where r^, r^, Tj, • • • are the radii vectores drawn from points

on the axis a^, ag, fig, • • • to the same point of the body. Let

the vectors r^, t^, fg, • • • be drawn from the common point of

intersection of the axes. Then

ri = r2 = r3 = ...=r
and

V = Vi + Vj + Vg + • • • = a^xr + sl^xt + agXr + • • •

= (ai + aa + ag + . • .)xr.

This shows that the body moves as if rotating with the

angular velocity which is the vector sum of the angular

velocities a^, a.^, ag, • • • This theorem is sometimes known
as the parallelogram law of angular velocities.

It will be shown later (Art.) 60 that the motion of any

rigid body one point of which is fixed is at each instant of

time a rotation about some axis drawn through that point.

This axis is called the instantaneous axis of rotation. The

axis is not the same for all time, but constantly changes its

position. The motion of a rigid body one point of which is

fixed is therefore represented by

V = axr (45)

where a is the instantaneous angular velocity; and r, the

radius vector drawn from the fixed point to any point of the

body.

The most general motion of a rigid body no point of which

is fixed may be treated as follows. Choose an arbitrary-

point 0. At any instant this point will have a velocity Vo-

Relative to the point the body will have a motion of rotation

about some axis drawn through 0. Hence the velocity v of

any point of the body may be represented, by the sum of

Vo the velocity of and axr the velocity of that'^oint

relative to 0.

V = Vo + axr. (46)
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In case Vo is parallel to a, the body moves around a and

along a simultaneously. This is precisely the motion of a

screw advancing along a. In case Vo is perpendicular to a, it

is possible to find a point, given by the vector r, such that

its velocity is zero. That is

axr = — Vq.

This may be done as follows. Multiply by xa.

(axr)xa = — VoXa

or a-a r — a«r a = — VoXa.

Let r be chosen perpendicular to a. Then a«r is zero and

a»a r = — Vo X a

^ ^
- Yq X a

a>a

The point r, thus determined, has the property that its veloc-

ity is zero. If a line be drawn through this point parallel to

a, the motion of the body is one of instantaneous rotation

about this new axis.

In case Vo is neither parallel nor perpendicular to a it may
be resolved into two components

Vo = Vo' + Vo"

which are respectively parallel and perpendicular to a.

v = Vo' + Vo" + axr

A point may now be found such that

Vo" = — axr.

Let the different points of the body referred to this point be

denoted by r'. Then the equation becomes

V = Vo' + axr'. (46)'

The motion here expressed consists of rotation about an axis

a and translation along that axis. It is therefore seen that

the most general motion of a rigid body is at any instant
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the motion of a screw advancing at a certain rate along a

definite axis a in space. The axis of the screw and its rate

of advancing per unit of rotation (i. e. its pitch) change from
instant to instant.

52.] The conditions for equilibrium as obtained by the

principle of virtual velocities may be treated by vector

methods. Suppose any system of forces f j, f 2, • act on a

rigid body. If the body be displaced through a vector dis-

tance D whether this distance be finite or infinitesimal the

work done by the forces is

D.fi, D.f2, . .

.

The total work done is therefore

jr=D.fi + D.f2 + ...

If the body be in equilibrium under the action of the forces

the work done must be zero.

W= D.fi + D.fg + • • = D.(fi + fj + ...) = D.R = 0.

The work done by the forces is equal to the work done by

their resultant. This must be zero for every displacement

D. The equation

D.R =

holds for all vectors D. Hence

R = 0.

The total resultant must be zero if the body be in equilibrium.

The work done by a force f when the rigid body is dis-

placed by a rotation of angular velocity a for an infinitesimal

time t is approximately
a.dxf t, ~ t '^ •-'

I f

where d is a vector drawn from any point of the axis of rota-

tion a to any point of f. To prove this break up f into two

components f ', f" parallel and perpendicular respectively to a.

a-dxf = a^dxf ' -1- a-dxf ".
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As f ' is parallel to a the scalar product [a d f '] vanishes.

a-dxf = a«dxf ".

On the other hand the work done by f" is equal to the work

done by f during the displacement. For f ' being parallel to

a is perpendicular to its line of action. If h be the common

vector perpendicular from the line a to the force f ", the work

done by f" during a rotation of angular velocity a for time

t is approximately

• W= h f" a t = &'la.xt" t.

The vector d drawn from any point of a to any point of f may

be broken up into three components of which one is h, another

is parallel to a, and the third is parallel to f ". In the scalar

triple product [adf] only that component of d which is

perpendicular alike to a and f" has any effect. Hence

W= a.hxf" t = a.dxf' t' = a.dxf f.

If a rigid body upon which the forces f j, f2, • • • act be dis-

placed by an angular velocity a for an infinitesimal time t

and if dj, dg, • • • be the vectors drawn from any point of

a to any points of f 1, f2, • • • respectively, then the work done

by the forces f j, f 2» • will be approximately

W= (a-djXf 1 + a-djXfa + •••)*

= a.(diXfi + d2Xf2 + •••)«

= a.Mo{fi, fa, ••}«.

If the body be in equilibrium this work must be zero.

Hence a-Mo \ii, f^^} t = 0.

The scalar product of the angular velocity a and the total

moment of the forces fj, fg, • • • about any point must be

zero. As a may be any vector whatsoever the moment itself

must vanish.

Mo {fi, f 2, • •} = 0.
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The necessary conditions that a rigid body be in equilib-

rium under the action of a system of forces is that the result-

ant of those forces and the total moment about any point in

space shall vanish.

Conversely if the resultant of a system of forces and the

moment of those forces about any one particular point in space

vanish simultaneously, the body will be in equilibrium.

If R = 0, then for any displacement of translation D

D.E = 0.

jr=D.fi + D.f2 + --- =

and the total work done is zero, when the body suffers any

displacement of translation.

Let Mo {fi, f2» • • •
I
be zero for a given point 0. Then for

any other point 0'

Mo' {fi, fa, • • -I = Mo {
fi, fa, •

. •} + Mo' {Eo}.

But by hypothesis R is also zero. Hence

Mo'{fi,f2, •••}=0.

Hence a«Mo' {fp ^2> ' "I ^ =

where a is any vector whatsoever. But this expression is

equal to the work done by the forces when the body is rotated

for a time t with an angular velocity a about the line a

passing through the point 0'. This work is zero.

Any displacement of a rigid body may be regarded as a

translation through a distance D combined with a rotation

for a time t with angular velocity a about a suitable line a in

space. It has been proved that the total work done by the

forces dujing this displacement is zero. Hence the forces

must be in equilibrium. The theorem is proved.
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Applications to Geometry

53.] Relations between two right-handed systems of three

mutually perpendicular unit vectors.— Let i, j, k and i', j', k'

be two such systems. They form their own reciprocal systems.

Hence
r = r.ii + r-j j + fk k _

and r = r.i'i' + r.j'j' + r.k'k'. ^ ^

From this

{

= i'-i i + i'-j j + i'-k k = a^i + a^j + a^Ts.

j' = j'.ii + j'-jj+ j'.kk=&ii + 6J +&3t (47')

k' = k'.i i + k'.j j + k'.k k = Cj i + Cg j + Cg k.

The scalarsiXj, a^, a^; b^, b^ti^; Cj, o^, Cg are respectively the

direction cosines of i'; j'; k' with respect to i, j, k.

That is

csj = cos (1', 1) ^2 = cos (i', j) ffig = cos (i', k)

6i
= cos (j', 1) &2 = cos (j',j) 63 = 003 (j', k) (48)

Cj — cos (k', 1) Cg = cos (k', j) Cg = cos (k', k).

In the same manner

r i = i-i'i' + i.j'j' + i.k' k' = a^ i' + b^ }' + Cj k'

] j - j-i'i' + J-J'J' + J-k'k' = «2 i' + h y + «2 k' (47)"

C k = k.i'i' + k.j'j' + k-k'k' = osg i' + 63 j' + Cg k'

]
j'-j' = 1 = Si^ + b^^ + 632 (49)

C k'.k' = 1 = c^a + c^2 + C32

^ i.i = 1 = aj2 + J,
2 + c^2

and ) j.j = 1 = a^^ + b^^ + c^ (49)'

C k-k = 1 = ^32 + 632 + Cg2

I i'-j' = = fflj 61 + 0^2 ^2 + «^3 ^3

and
I

j'.k' = = Sj Cj ^b^c^-\- Sg.Cg (50)

\ k'>i' = = Cj aj + Cg 0^2 + C3 ag
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and

and

i.j = = «! a^ + 61 ^2 + Cj C2

j.k = = «„ «« + &s ^a + C'''2 ''8 (50)'

, k'i = = ffig ttj + 63 Jj + Cg Cj

[ijk] = [i'j'k'] = l =
«1
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the i direction but to lie wholly in the jk-plane ; and from

its form upon the left it is seen to lie in the j'k '-plane.

Hence it must be the line of intersection of those two planes.

Its magnitude is V a^ + a^ or V l^ + c^. This gives the

scalar relations

The magnitude 1 — a-^ is the square of the sine of the angle

between the vectors i and i'. Hence the vector

h k' - Ci j' = ag j - aa k (53)

is the line of intersection of the j'k'- and jk-planes, and

its magnitude is the sine of the angle between the planes.

Eight other similar vectors may be found, each of which gives

one of the nine lines of intersection of the two sets of mu-

tually orthogonal planes. The magnitude of the vector is in

each case the sine of the angle between the planes.

54.] Various examples in Plane and Solid Geometry may

be solved by means of products.

Example 1 : The perpendiculars from the vertices of a trian-

gle to the opposite sides meet in a point. Let ABO he the

triangle. Let the perpendiculars from AtoBG and from B
to GA meet in the point 0. To show 6> C is perpendicular

to AB. Choose as origin and let OA = A, OB ='B, and
00'= C. Then

BG=C--B, OA = A-C, AB^B-A.
By hypothesis

A.(C - B) =
and B.(A - C) = 0.

Subtract

;

C.(B — A) = 0,

which proves the theorem.

Example 2 : To find the vector equation of a line drawn

through the point B parallel to a given vector A.
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Let be the origin and B the vector 'OB. Let E be the ra-

dius vector from to any point of the required line. Then
E — B is parallel to A. Hence the vector product vanishes.

Ax(E-B) = 0.

This is the desired equation. It is a vector equation in the

imknown vector E. The equation of a plane was seen (page

88) to be a scalar equation such as

E.C = c

in the unknown vector E.

The point of intersection of a line and a plane may be

found at once. The equations are

( Ax(E - B) =
I H'C = c

AxE = AxB

(AxE)xC = (AxB)xC

A'C E — C-E A = (AxB)xC

A'C E - c A = (AxB)xC

Hence
(AxB)xC + c A

^

A.C

The solution evidently fails when A • C = 0. In this case how-

ever the line is parallel to the plane and there is no solution

;

or, if it lies in the plane, there are an infinite number of solu-

tions.

Example 3: The introduction of vectors to represent planes.

Heretofore vectors have been used to denote plane areas of

definite extent. The direction of the vector was normal to

the plane and the magnitude was equal to the area to be re-

presented. But it is possible to use vectors to denote not a

plane area but the entire plane itself, just as a vector represents

a point. The result is analogous to the plane coordinates of

analytic geometry. Let be an assumed origin. Let MJ!^ be

a plane in space. The plane MN is to be denoted by a vector
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whose direction is the direction of the perpendicular dropped

upon the plane from the origin and whose magnitude is the

reciprocal of the length of that perpendicular. Thus the nearer

a plane is to the origin the longer will be the vector which

represents it.

If r be any radius vector drawn from the origiq to a point

in the plane and if p be the vector which denotes the plane,

then
r«p = 1

is the equation of the plane. For

r.p = r cos (r, p) p.

Now p, the length of p is the reciprocal of the perpendicular

distance from to the plane. On the other hand r cos (r, p)

is that perpendicular distance. Hence r»p must be unity.

If r and p be expressed in terms of i, j, k

r = a;i + yj + «k

p = ui + vj + wk
Hence i-t? = xu + yv + sw = 1.

The quantities u, v, w are the reciprocals of the intercepts of

the plane p upon the axes.

The relation between r and p is symmetrical. It is a relar

tion of duality. If in the equation

r«p = 1

r be regarded as variable, the equation represents a plane p

which is the locus of all points given by r. If however p be

regarded as variable and r as constant, the equation repre-

sents a point r through which aU the planes p pass. The
development of the idea of duaUty will not be carried out.

It is familiar to all students of geometry. The use of vec-

tors to denote planes will scarcely be alluded to again until

Chapter VII.
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SUMMAKY OF ChAPTEK II

The scalar products of two vectors is equal to the product

of their lengths multiplied by the cosine of the angle between
them.

A'B = ^ 5 cos (A, B) (1)

A-B = B.A (2)

A.A = ^2. (3^

The necessary and sufficient condition for the perpendicularity

of two vectors neither of which vanishes is that their scalar

product vanishes. The scalar products of the vectors 1, j, k

are

i'i = i'j = k.k = 1

i.j =j.k = k.i = ^^^

A.B = ^1 ^1 + A^ B^ + ^3 Sg (7)

A-A = A^ = A^^ + A^ + A^. (8)

If the projection of a vector B upon a vector A is B',

The vector product of two vectors is equal in magnitude to

the product of their lengths multiplied by the sine of the an-

gle between them. The direction of the vector product is the

normal to the plane of the two vectors on that side on which

a rotation of less than 180° from the first vector to the second

appears positive.

AxB = ^ 5 sin (A, B) XS/ (9)

The vector product is equal in magnitude and direction to the

vector which represents the parallelogram of which A and B

are the two adjacent sides. The necessary and suificient con-

dition for the parallelism of two vectors neither of which



110 VECTOR ANALYSIS

vanishes is that their vector product vanishes,

mutative laws do not hold.

AxB=-BxA
ixi = jxj = kxk =

ixj =— jxi = k

jxk = — kxj = i

kxi = — ixk = j

AxB = (^2 ^3 - ^3 ^2) i + (^3 A - ^1 B^)\

i J k

AxB= A, .

The com-

(10)

(12)

Bl Ba B.

(13)

(13)'

The scalar triple product of three vectors [A B C] is equal

to the volume of the parallelepiped of which A, B, C are three

edges which meet in a point.

[AB C] = A.BxC = B.CxA = C«AxB

= AxB-C = BxC.A = CxA'B

[ABC]=- [ACB].

(16)'

(16)'

The dot and the cross in a scalar triple product may be inter-

changed and the order of the letters may be permuted cyclicly

without altering the value of the product ; but a change of

cyclic order changes the sign.

[ABC] =
A-^ A^ A^

Bi B^ B^

^1 ^2 ^s

(18)'

[ABC] = [a be] (19)'
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If the component of B perpendicular to A be B",

Ax(BxC) = A.C B - A-B C (24)

(AxB)xC = A.CB-C.BA (24)'

(AxB).(CxD) = A'C B.D - A-D B-C (25)

(AxB)x(CxD) = [A C D] B - [B C D] A
= [ABD] C-[ABC]D. (26)

The equation which subsists between four vectors A, B, C, D
is

[BCD] A-[CDA]B+[DAB] C- [ABC]D = 0. (27)

Application of formulse of vector analysis to obtain the for-

mulae of Plane and Spherical Trigonometry.

The system of vectors a', b', c' is said to be reciprocal to the

system of three non-coplanar vectors a, b, c

- , bxc cxa axb
when a'= .-.-, » V = .. ^ , ' <* = f-tT (29)

[a be] [abc] [abc] ^ ^

A vector r may be expressed in terms of a set of vectors and

its reciprocal in two similar ways

r = r.a' a + r.b' b + r-c' o (30)
°^

r = r.a a' + r.b b' + r-c c'. (31)

The necessary and sufficient conditions that the two systems of

non-coplanar vectors a, b, c and a', b', c' be reciprocals is that

a'.a = b'.b = c'.c = 1

a'.b = a'.c = b'.c = b'.a = c'-a = c'.b = 0. ^ -^

If a', b', c' form a system reciprocal to a, b, c ; then a, b, c will

form a system reciprocal to a', b', c'.
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P.A P.B P.C

[P Q R] [A B C] = a-A a-B Q'C

E>A E>B B-C

(34)

The system i, j, k is its own reciprocal and if conversely a

system be its own reciprocal it must be a right or left handed

system of three mutually perpendicular unit vectors. Appli-

cation of the theory of reciprocal systems to the solution of

scalar and vector equations of the first degree in an unknown

vector. The vector equation of a plane is

r.A = a. (36)

Applications of the methods developed in Chapter II., to the

treatment of a system of forces acting on a rigid body and in

particular to the reduction of any system of forces to a single

force and a couple of which the plane is perpendicular to that

force. Application of the methods to the treatment of

instantaneous motion of a rigid body obtaining

v = Vo + a X r (46)

where v is the velocity of any point, v,, a translational veloc-

ity in the direction a, and a the vector angular velocity of ro-

tation. Further application of the methods to obtain the

conditions for equilibrium by making use of the principle of

virtual velocities. Applications of the method to obtain

the relations which exist between the nine direction cosines

of the angles between two systems of mutually orthogonal

axes. Application to special problems in geometry including

the form under which plane coSrdinates make their appear-

ance in vector analysis and the method by which planes (as

distinguished from finite plane areas) may be represented

by vectors.
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ExEBCiSES OK Chapter II

Prove the following reduction formulae

1. Ax{Bx(CxD)} = [ACD] B - A-B CxD
= B.D AxC - B.C AxD.

2. [AxB CxD ExF]= [ABD] [CEF]- [ABC] [DEF]
= [ABE] [FCD] - [ABF] [E C D]

= [CD A] [BEF] - [CDB] [AEF].

3. [AxB BxC CxA] = [ABC] 2.

4. [PftR] (AxB)

P«A P.B P

a-A Q.B a
B-A B>B B

5. Ax (BxC) + Bx(CxA) + Cx(AxB) = 0.

/^6. [AxP Bxa CxE] + [AxQ BxR CxP]

+ [AxB BxP Cxft] = 0.

7. Obtain formula (34) in the text by expanding

[(AxB)xP].[Cx(axR)]

in two different ways and equating the results.

8. Demonstrate directly by the above formulae that if

a', b', c' form a reciprocal system to a, b, c; then a, b, c form

a system reciprocal to a', b', c'.

9. Show the connection between reciprocal systems of vec-

tors and polar triangles upon a sphere. Obtain some of the

geometrical formulae connected with polar triangles by inter-

preting vector formulae such as (3) in the above list.

10. The perpendicular bisectors of the sides of a triangle

meet in a point.

11. Find an expression for the common perpendicular to

two lines not lying in the same plane.
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12. Show by vector metliods that the formulsB for the vol-

ume of a tetrahedron whose four vertices are

(Pv Vv «i)
IS

1 Vx

Vi

z, 1

^2 1

»8 1

3. 1

13. Making use of formula (34) of the text show that

T^



CHAPTER III

THE PrFFEBEKTTATi CAIiCXJLUS OP VECTORS

Differentiation of Functions of One Scalar Variable

55.] If a vector varies and changes from r to r' the incre-

ment of r will be the difference between r' and r and will be

denoted as usual by A r.

A r = r' - r, (1)

where A r must be a vector quantity. If the variable r be

unrestricted the increment A r is of course also unrestricted

:

it may have any magnitude and any direction. If, however,

the vector r be regarded as a function (a vector function) of

a single scalar variable t the value of A r will be completely

determined when the two values t and t' oit, which give the

two values r and r', are known.

To obtain a clearer conception of the quantities involved

it wlU. be advantageous to think of the vector r as drawn

from a fixed origin (Fig. 26). When
the independent variable t changes its

value the vector r will change, and as t

possesses one degree of freedom r will

vary in such a way that its terminus

describes a curve in space, r wiU be

the radius vector of one point P of

the curve ; r', of a neighboring point P'. A r will be the

chord PP' of the curve. The ratio

At
a1

O Fig. 26.
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will be a vector coUinear with the chord P P' but magnified

in the ratio 1 : A ^. When A t approaches zero P' will ap-

proach P, the chord PP' will approach the tangent at P, and

the vector

-— wiU approach —

-

A «
^^ dt

which is a vector tangent to the curve at P directed in that

sense in which the variable t increases along the curve.

If r be expressed in terms of i, j, k as

r = rii+ rgj + rgk

the components r^, r^, r^ will be functions of the scalar t.

r' = (rj + Ari)i + (r^ + Ar2)j + (rg + Ar3)k

A r = r' — r = A r^ 1 + A 7*2 j + A r-g k

— =z ATI i + A!J i + A^a k
Ai! AiS A« ' Ai!

, dr dr, , drg dr^

Hence the components of the first derivative of r with re-

spect to t are the first derivatives with respect to t of the

components of r. The same is true for the second and higher

derivatives.

d^_d^. d^, d^
dt^~'dW^'^~dt^^'^~dW^''

(2)'
d" r d^r, d^r^ d"rs,

dt" dt" df"^ dt"

In a similar manner if r be expressed in terms of any three

non-coplanar vectors a, b, c as

r = aa + 6b + cc

d"i _d"a d"l d"c

'dT"~'dF^^dT" ""J^"'
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Example : Let r = a cos i + b sin t.

The vector r will then describe an ellipse of which a and b

are two conjugate diameters. This may be seen by assum-

ing a set of oblique Cartesian axes JT, Y coincident with a

and b. Then
J^=aGost, Y=hsmt,

which is the equation of an ellipse referred to a pair of con-

jugate diameters of lengths a and l respectively.

dx
-J- = — a sm i 4- b cos t.

at

Hence — = a cos (« + 90°) -f- b sin (i5 + 90°).

The tangent to the curve is parallel to the radius vector

for + 90°). ^2^
~

-TTj = — (a COS < -h b sin f).

The second derivative is the negative of r. Hence

d7^ ~ " '

is evidently a differential equation satisfied by the ellipse.

Bxample : Let r = a cosh ^ + b sinh t.

The vector r will then describe an hyperbola of which a and

b are two conjugate diameters.

dr— = a sinh ^ + b cosh t,

dt

and -T—^ — a cosh ^ -|- b sinh t.

dt^

d^T
Hence ^ = r

is a differential equation satisfied by the hyperbola.
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56.] A combination of vectors all of which depend on the

same scalar variable t may be differentiated very much as in

ordinary calculus.

For

(a + Arf).(l) + Ab) = a.b + a.Ab-f:Aa»b+Aa.Ab

A(a.b) = (a + Aa).(b + Ab)-a.b

= a.Ab + Aa»b + Aa.Ab

A(a.b") Ab Aa , Aa«Ab
M ~ M Lt A«

Hence in the limit when A < = 0,

_(a.b) = a._ + -.b (3)

dt

-(a.bxc) = a.bx(^-J + a.(^-jxc

^(ax[bxc]) = ax[bx(^^)]+)^;[(^)xc]

+ (^) X [b X c]. (6)

The last three of these formulae may be demonstrated exactly

as the first was.

The formal process of HifEerentiation in vector analysis

differs in no way from that in -scalar analysis except in this

one point in which vector analysis always differs from scalar

analysis, namely : The order of the factors in a vector product
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cannot be changed without changing the sign of the product.

Hence of the two fonnulsB

and i(«'X^) = (^)xb + ax(^)

the first is evidentfy incorrect, but the second correct. In

other words, scalar differentiation must take place without

altering the order of the factors of a vector product. The

factors must be differentiated in situ. This of course was to

be expected.

In case the vectors depend upon more than one variable

the results are practically the same. In place of total deriva-

tives with respect to the scalar variables, partial derivatives

occur. Suppose a and b are two vectors which depend on

three scalar variables x, y, z. The scalar product a«b will

depend upon these three variables, and it wiU have three

partial derivatives of the first order.

(7)

s»<'
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Often it is more convenient to use not the derivatives but

the differentials. This is particularly true when dealing with

^rs^ differentials. The formulae (3), (4) become

d (a-b) = c?a.b + a-c^b, (3)'

(? (a X b) = c?a X b + a X cZb, (4)'

and so forth. As an illustration consider the following

example. If r be a unit vector

r.r = 1.

The locus of the terminus of r is ,a spherical surface of unit

radius described about the origin, r depends upon two vari-

ables. Differentiate the equation.

((?r).r + r.(«^r) = 2r.((^r) = 0.

Hence r • c^ r = 0.

Hence the increment <^r of a Mm< vector is perpendicular to

the vector. This can be seen geometrically. If r traces a

sphere the variation d r must be at each point in the tangent

plane and hence perpendicular to r.

*57.] Vector methods may be employed advantageously

in the discussion of curvature and torsion of curves. Let r

denote the radius vector of a curve

r = f(0,

where f is some vector function of the scalar t. In most appli-

cations in physics and mechanics t represents the time. Let

s be the length of arc measured from some definite point of

the curve as origin. The increment A r is the chord of the

curve. Hence A r / A s is approximately equal' in magnitude

to unity and approaches unity as its limit when As becomes

iniinitesimal. Hence dv/ds will be a unit vector tangent^

the curve and will be directed toward that portion of the



THE DIFFERENTIAL CALCULUS OF VECTORS 121

curve along which s is increasing (Fig. 27)

unit tangent

dr

Let t be the

t.*«t

Fig. 27.

The curvature of the curve is the

limit of the ratio of the angle through

which the tangent turns to the length

of the arc. The tangent changes by the increment At. As t

is of unit length, the length of A t is approximately the angle

through which the tangent has turned measured in circular

measure. Hence the directed curvature C is

C = LiM At
As=0 Ai

dt

ds
(9)

The vector C is coUinear with A t and hence perpendicular to

t ; for inasmuch as t is a unit vector A t is perpendicular

to t.

The tortuosity of a curve is the limit of the ratio of the

angle through which the osculating plane turns to the length

of the arc. The osculating plane is the plane of the tangent

vector t and the curvature vector C. The normal to this

P^^^«^ N = txC.

If c be a unit vector collinear with C

n = t X c

will be a- unit normal (Fig. 28) to the osculating plane and

the three vectors t, c, n form an i, j, k system,

that is, a right-handed rectangular system.

Then the angle through which the osculating

plane turns will be given approximately by

A n and hence the tortuosity is by definition

dn/ds. '-''"

From the fact that t, c, n form an i, j, k system of unit

vectors

Fig. 28.
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t.t = c»c = ii»n = l

and t"C = c«ii = ii»t = 0.

Differentiating the first set

t«<£t = C'cic = n»<:?n = 0,

and the second

t'(ic + <?t«c=c»dn + (Zc»n = n»it + dn't = 0.

But di\s parallel to c and consequently perpendicular to n.

n.' di = 0.

Hence c?n • t= 0.

The increment of n is perpendicular to t. But the increment

of n is also perpendicular to n. It is therefore parallel to c.

As the tortuosity is T = d n/d s, it is parallel to d n and hence

to c.

The tortuosity T is

„ d ^^ ^ d (dx d'^x IN ,.,.
T = — (txc) =— — X-j-^ , ) (11)

ds ds\ds ds^ VC'C/

„ d^T d^T 1 di d^i 1
T = -T—o X r-s —= + -T- X

d s^ c? s^ y"C7C ds ds^ \/c»C

dT d^T d

d s ds^ ds a/ Q.Q

The first term of this expression vanishes. T moreover has

been seen to be parallel to C = d^ t/d s^. Consequently the

magnitude of T is the scalar product of T by the unit vec-"!'

tor c in the direction of C. It is desirable however to have

the tortuosity positive when the normal n appears to turn in

the positive or counterclockwise direction if viewed from

that side of the n c-plane upon which t or the positive part

of the curve lies. With this convention d n appears to move

in the direction — c when the tortuosity is positive, that is, n

turns away from c. The scalar value of the tortuosity will

therefore be given by — c . T.
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dx d^T 1 di d^T d 1— C.T = -C.— X-r-o^=. - c . — X
ds ds^y^Q.Q ds ds^dS'^/Q.Q

But c is parallel to the vector d^ i/d s^. Hence

di d'^r_

ds ds^

And c is a unit vector in the direction C. Hence

C d^r 1
c =

VC.C ds^A/cTc

TT m « d^T di d^T 1 ^^„,Hence, r= -c -T = -- • - x -3— •
) (12)

Or T= —• (13)
d^i d^
ds^'Ts^

The tortuosity may be obtained by another method which

is somewhat shorter if not quite so straightforward.

t«c = c«n = n«t = 0.

Hence di'(i = — dc't

de '& = — dH'C

dn»t = — di'JL

Now d t is parallel to c ; hence perpendicular to n. Hence

d t • n = 0. Hence dn«t = 0. But«Znis perpendicular to n.

Hence d n must be parallel to c. The tortuosity is the mag-

nitude of dn/ds taken however with the negative sign

because d n appears clockwise from the positive direction of

the curve. Hence the scalar tortuosity T may be given by

r = txc.|-% (14)'
ds



124

t X
de

ds

But
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helpful. He works with vectors constantly. The treatment

is elegant. The notation used is however slightly different

from that used by the present writer. The fundamental

points of difference are exhibited in this table

»! * a 2 ~ [^^i ^a]

ai X ag ~ [«! I
ttg]

aj • aa X ag = [a^ a.^ agj ~ [a^ a^ a^'].

One used to either method need have no difficulty with the

other. AU the important elementary properties of curves

and surfaces are there treated. They wiU not be taken

up here.

* Kinematics

58.] Let r be a radius vector drawn from a fixed origin to

a moving point or particle. Let t be the time. The equation

of the path is then
r = f(0.

The velocity of the particle is its rate of change of position.

This is the limit of the increment A r to the increment A t.

LiM rAr"] dT

This velocity is a vector quantity. Its direction is the

direction of the tangent of the curve described by the par-

ticle. The term speed is used frequently to denote merely

the scalar value of the velocity. This convention will be

followed here. Then

. = ^; (16)
d t

if s be the length of the arc measured from some fixed point

of the curve. It is found convenient in mechanics to denote

differentiations with respect to the time by dots placed over

the quantity differentiated. This is the oldiflmional notation
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introduced by Newton. It will also be convenient to denote

the unit tangent to the curve by t. The equations become

v = s=- (16)

V = v t. (17)

The acceleration is the rate of change of velocity. It

is a vector quantity. Let it be denoted by A. Then by

definition

_ LiM Av _dv _ '

A-At= 0A7 = d7~'
A dv d /dr\ d^x ..

Differentiate the expression v = t; t.

dv d(vi) dv dt

dt dt dt dt

dv d^s

dt'^dt^^^'

dt dt d s
-— = _- -— — Cv,
dt ds d t

where C is the (vector) curvature of the curve and v is the

speed in the curve. Substituting these values in the equation

the result is

A = s t + «2 c.

The acceleration of a particle moving in a curve has there-

fore been broken up into two components of which one is paral-

lel to the tangent t and of which the other is parallel to the

curvature C, that is, perpendicular to the tangent. That this

resolution has been accomplished would be unimportant were
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it not for the remarkable fact which it brings to light. The

component of the acceleration parallel to the tangent is equal

in magnitude to the rate of change of speed. It is entirely

independent of what sort of curve the particle is describing.

It would be the same if the particle described a right line

with the same speed as it describes the curve. On the other

hand the component of the acceleration normal to the tangent

is equal in magnitude to the product of the square of the

speed of the particle and the curvature of the curve. The

sharper the curve, the greater this component. The greater

the speed of the particle, the greater the component. But the

rate of change of speed in path has no effect at all on this

normal component of the acceleration.

If r be expressed in terms of i, j, k as

r = a;i + yjH-sk,

v = r = a!i + yj + sk, (15)'

(16)'

(18)'

V x^ + y^ + z^

From these formulae the difference between s, the rate of

change of speed, and A = r, the rate of change of velocity,

is apparent. Just when this difference first became clearly

recognized would be hard to say. But certain it is that

Newton must have had it in mind when he stated his second

law of motion. The rate of change of velocity is proportional

to the impressed force ; but rate of change of speed is not.

59.] The hodograph was introduced by Hamilton as an

aid to the study of the curvilinear motion of a particle.

With any assumed origin the vector velocity f is laid off.

The locus of its terminus is the hodograph. In other words,

the radius vector in the hodograph gives the velocity of the
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particle in magnitude and direction at any instant. It is

possible t© proceed one step further and construct tlie hodo-

graph of the hodograph. This is done by laying off the

vector acceleration A = r from an assumed origin. The

radius vector in the hodograph of the hodograph therefore

gives the acceleration at each instant.

Example 1 : Let a particle revolve in a circle (Fig. 29)

of radius r with a uniform

angular velocity a. The

speed of the particle wiU then

be equal to

V ^ a r.

Let r be the radius vector

drawn to the particle. The

velocity v is perpendicular to r and to a. It is

r = V = a X r.
'

V/ '' J

Fig. 29.

The vector v is always perpendicular and of constant magni-

tude. The hodograph is therefore a circle of radius v — ar.

The radius vector r in this circle is just ninety degrees in

advance of the radius vector r in its circle, and it conse-

quently describes the circle with the same angular velocity

a. The acceleration A which is the rate of change of v is

always perpendicular to v and equal in magnitude to

A = a V — a^ r.

The acceleration A may be given by the formula

r = A = axv = ax(axr) = a«r a — a«a r.

But as a is perpendicular to the plane in which r lies, a • r= 0.

Hence
r = A = -a-a r = -a^ r.

The acceleration due to the uniform motion of a particle in

a circle is directed toward the centre and is equal in magni-

tude to the square of the angular velocity multiplied by the

radius of the circle.
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Example £ : Consider the motion of a projectile. The

acceleration in this case is the acceleration g due to gravity.

f = A = g.

The hodograph of the hodograph reduces to a constant

vector. The curve is merely a point. It is easy to find

the hodograph. Let Vo be the velocity of the projectile

in path at any given instant. At a later instant the velocity

will be
V = Vo + « g.

Thus the hodograph is a straight line parallel to g and pass-

ing through the extremity of Vo- The hodograph of a

particle moving under the influence of gravity is hence a

straight line. The path is well known to be a parabola.

Example 3 : In case a particle move under any central

acceleration

r = A = f(r).

The tangents to the hodograph of r are the accelerations x.

But these tangents are approximately collinear with the

chords between two successive values r and io of the radiua

vector in the hodograph. That is approximately

r — r„
r =

a;

(r — f )
Multiply by rx. r x r = r x

°
•

Since r and r are parallel

r X (i - r„) = 0.

Hence r x r = r x f,

.

But 1^ r X r is the rate of description of area. Hence the

equation states that when a particle moves under an ac-

celeration directed towards the centre, equal areas are swept

over in equal times by the radius vector.

9
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Perhaps it would be well to go a little more carefully into

this question. If r be the radius vector of the particle in

its path at one instant, the radius vector at the next instant

is r + A r. The area of theVector of which r and r^ A r are

the bounding radii is approximately equal to the area of the

triangle enclosed by r, r + A r, and the chord A r. This

area is

|rx(r + Ar)=irxr + -r xAr=irxAr.

The rate of description of area by the radius vector is

consequently

Lm 1 rxCrx^Ar) _ j^^ 1, ^ ^ - ^
; v r

A« = 02 At ~M = 02"^ At~^

Let r and to be two values of the velocity at two points

P and Pa which are near together. The acceleration iig at P,

is the limit of

r — ro _ Af
At At

'

A *
* *

Break up the vector ——- = "~^P into two components one

parallel and the other perpendicular to the acceleration r'o

.

Af

if n be a normal to the vector if,,. The quantity x ap-

proaches unity when A t approaches zero. The quantity y
approaches zero when A t approaches zero.

Ar = T-i„ = xAtTa + yAtn.

Hence rx(r-ro) = a;A<rxro + 2^A<rxn.

r X (r - r„) = r X f -K +^ A A X r„.
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Hence

Arrxr— roXro=-r-XroA« + a;A<rxro + yA«rxn.

But each of the three terms upon the right-hand side is an

infinitesimal of the secovd order. Hence the rates of descrip-

tion of area at P and P^ differ by an infinitesimal of the

second order with respect to the time. This is true for any

point of the curve. Hence the rates must be exactly equal

at all points. This proves the theorem.

60.] The motion of a rigid body one point of which is

fixed is at any instant a rotation about an instantaneous axis

passing through the fixed point.

Let i, j, k be three axes fixed in the body but moving in

space. Let the radius vector r be drawn from the fixed point

to any point of the body. Then

r = a;i + yjH-2k,

dt = xdi+ydi + zdTs.. ,

But dr = (dr.i)i+ (<ir.j)j + (c?r.k)k.

Substituting the values of (Z r • i, d r • j, <i r • k obtained from

the second equation

dr = {xi ' di+ yi » di + zi ' d'k)i

+ (33 j • d\ + yi ' d}-\- zi • d k) j

+ (a;k.<?i + yk«dj + ak«dk)k.

But i.j=j .k = k.i = 0.

Hence !• d^+i > d\ = or j.cZi = — i«dj

j.£?k + k.dj = or k.<Zj = — j«(Zk

k.(Zi-f-i«dk = or i.(Zk = — k«di.

Moreover i.i=j.j=k»k = l.

Hence i.(ii = j.<Zj = k«cZk = 0.
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Substituting these values in the expression for d r.

dx = (zi'd'k. — yi'di')i+(x}'di — z}s.'d})}

+ (y k . d j — a; i . (? k) k.

This is a vector product,

dT = (k'di i + i'dls. j + j«di k)x(a; i + y j + a k).

Let
,. ^j • , . <^^ . , . '^i

,

Then . d r
r = -J-

= a X r.
d t

This shows that the instantaneous motion of the body is one

of rotation with the angular velocity a about the line a.

This angular velocity changes from instant to instant. The

proof of this theorem fills the lacuna in the work iu Art. 61.

Two infinitesimal rotations may be added like vectors.

Let ai and ag be two angular velocities. The displacements

due to them are

d^x = &-yXr dt,

d^T = &^y<.T dt.

If r be displaced by a, it becomes

T + d-^T = t + A^xx dt.

If it then be displaced by aj, it becomes

r + tZ r =; r + c^i r + aj X \r + (b.^xx) df] dt.

Hence (^ r = a^ X r d i + ag X r d « + aj X (a^ X r) (d i)^

If the infinitesimals (d t) ^ of order higher than the first be

neglected,

dT = &^XT dt + a.^xrdt={2L^ + &^ xxdt,

which proves the theorem. If both sides be divided hj dt

. dx ,
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This is the parallelogram law for angular velocities. It

was obtained before (Art. 61) in a differentway.

In case the direction of a, the instantaneous axis, is con-

stant, the motion reduces to one of steady rotation about a.

r = a X r.

The acceleration r = axr + axf = axr + ax (axr).

As a does not change its direction a must be collinear with

a and hence a X r is parallel to a X r. That is, it is perpen-

dicular to r. On the other hand ax (a X r) is parallel to r.

Inasmuch as all points of the rotating body move in con-

centric circles about a in planes perpendicular to a, it is

unnecessary to consider more than one such plane.

The part of the acceleration of a particle toward the centre

of the circle in which it moves is

a X (a X r).

This is equal in magnitude to the square of the angular

velocity multiplied by the radius of the circle. It does not

depend upon the angular acceleration a at aU. It corresponds

to what is known as centrifugal force. On the other hand

the acceleration normal to the radius of the circle is

axr.

This is equal in magnitude to the rate of change of angular

velocity multiplied by the radius of the circle. It does not

depend in any way upon the angular velocity itself but only

upon its rate of change.

61.] The subject of integration of vector equations in which

the differentials depend upon scalar variables needs but a

word. It is precisely like integration in ordinary calculus.

If then dT = d6,

r = s + C,
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where C is some constant vector. To accomplish the integra-

tion in any particular case may be a matter of some difficulty

just as it is in the case of ordinary integration of scalars.

Example 1 : Integrate the equation of motion of a

projectile.

The equation of motion is simply

which expresses the fact that the acceleration is always ver-

tically downward and due to gravity.

f = g < + b,

where b is a constant of integration. It is evidently the

velocity at the time t = 0.

r = |g<2 + bi + c.

c is another constant of integration. It is the position vector

of the point at time ^=0. The path which is given by this

last equation is a parabola. That this is so may be seen by
expressing it in terms of x and y and eliminating t.

Example 2 : The rate of description of areas when a par-

ticle moves under a central acceleration is constant

r = f (O-

Since the acceleration is parallel to the radius,

r X if = 0.

But r X if = ^- (r X r).
at

For j^
(r X f) = r X f + r X if.

Hence (r x f) =
at

and r X r = C,

which proves the statement.
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Example 3 : Integrate the equation of motion for a particle

moving with an acceleration toward the centre and equal to

a constant multiple of the inverse square of the distance

from the centre.

2 - * • C^ '*

Given '=-^'- 7.^ ' " "TT"

Then r x r = 0. ^ _ C^7

Hence r x r = C. ^
Multiply the equations together with x.

if X C — 1 , .- — 1 , . .-

-^2- = :^'^ (rxr)= ^ {r.r r - r.r r}.
r"

Differentiate. Then

r • r = r^.

r ' i = r r. i

1

- J

TT r X C r r
Hence ——- = _ -r.

g2 ly ^2

Each side of this equality is a perfect differential.

Integrate. Then ——- = - + e I,
6^ r

where e I is the vector constant of integration, e is its magni-

tude and I a unit vector in its direction. Multiply the equa-

tion by r •

.

r .r X C r • r
+ e r -

1

c r

But

C2

r-rxC rXr.C C«C
-.2 /.2
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I^et p _ —_ and cos v, = cos (r, I).
c

Then p = r { e r cos u.

Or p
r =

1 + e cos tt

This is the equation of the ellipse of which e is the eccentri-

city. The vector I is drawn in the direction of the major

axis. The length of this axis is

P
1 — e^

It is possible to carry the integration further and obtain

the time. So far merely the path has been found.

Scalar Fwmtions of Position in Space. The Operator V

62.J A function V (x, y, z) which takes on a definite scalar

value for each set of coordinates x, y, z in space is called a

scalar function of position in space. Such a function, for ex-

ample, is

V (a;, y, z) = x^ + y^ + z^ = r\

This function gives the square of the distance of the point

(x, y, z) from the origin. The function V will be supposed to

be in general continuous and single-valued. In physics scalar

functions of position are of constant occurrence. In the

theory of heat the temperature T at any point of a body is a

scalar function of the position of that point. In mechanics

and theories of attraction the potential is the all-important

function. This, too, is a scalar function of position.

If a scalar function V be set equal to a constant, the equa-

tion

V{x,y,z-)=e. (20)

defines a surface in space such that at every point of it the

function V has the same value c. In case V be the tempera-
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ture, this is a surface of constant temperature. It is called an
isothermal surface. In case V be the potential, this surface of

constant potential is known as an equipotential surface. As
the potential is a typical scalar function of position in space,

and as it is perhaps the most important of all such functions

owing to its manifold applications, the surface

obtained by setting V equal to a constant is frequently spoken
of as an equipotential surface even in the case where V has

no connection with the potential, but is any scalar function

of positions in space.

The rate at which the function V increases in the X direc-

tion— that is, when x cljanges to a; + A a; and y and z remain

constant— is

r V(x + Lx,y,z)-V {x, y, g) "j

L Aa; J-

Lm Yy(p + ^!^,y-,z')-y{x,y,z)

Aa; =

This is the partial derivative of Fwith respect to x. Hence

the rates at which V increases in the directions of the three

axes X, Y, Z are respectively

9r 9V 3V
3 as

' 9 y' S z

Inasmuch as these are rates in a certain direction, they may

be written appropriately as vectors. Let i, j, k be a system

of unit vectors coincident with the rectangular system of

axes X, Y, Z. The rates of increase of V are

9V .dV ^ 9V
9x' ^ 3y 9z

The sum of these three vectors would therefore appear to be

a vector which represents both in magnitude • and direction

the resultant or most rapid rate of increase of V. That this

is actually the case wiU be shown later (Art. 64).
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63.] The vector sum which is the resultant rate of increase

of V is denoted by V V.

vr = i|r+jf + k|^. (21)
3 X 9 y 9 z

V F represents a directed rate of change of F"— a directed

or vector derivative of V, so to speak. For this reason VF"

will be called the derivative of V; and V, the primitive of

VF. The terms gradient and slope of V are also used for

V F. It is customary to regardV as an operator which obtains

a vector VFfrom a scalar function Fof position in space.

This symbolic operator V was introduced by Sir W. R.

Hamilton and is now in universal employment. There

seems, however, to be no universally recognized name * for it,

although owing to the frequent occurrence of the symbol

some name is a practical necessity. It has been found by

experience that the monosyllable del is so short and easy to

pronounce that even in complicated formulae in whichV occurs

a number of times no inconvenience to the speaker or hearer

arises from the repetition. VF is read simply as " del F."

Although this operator V has been defined as

„ .9 .9 ,3
3x 9y 9 z

^ Some nse the term Nahla owing to its fancied resemblance to an Assyrian

haip. Others hare noted its likeness to an inverted A and have cdnseqnently

coined the none too enphonions name Aded bj inverting the order of the letters in

the word Delta. Foppl in his Einfuthrvmg in die MuxwelPsche Theorie der Elec-

tricitat avoids any special designation and refers to the symbol as "die Operation

V." How this is to be read is not divnlged. Indeed, for printing no particular

name is necessary, but for lecturing and purposes of instruction something is re-

quired— something too that does not confuse the speaker or hearer even when
often repeated.
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so that it appears to depend upon the choice of the axes, it

is in reality independent of them. This would be surmised

from the interpretation of V as the magnitude and direction

of the most rapid increase of V. To demonstrate the inde-

pendence take another set of axes, i', j', k' and a new set of

variables a/, y', z' referred to them. Then V referred to this

system is

9 S 9

d x' dy' 9z'

By making use of the formulae (47)' and (47)", Art. 63, page

104, for transformation of axes from i, j, k to i', j', k' and by
actually carrying out the differentiations and finally by

taking into account the identities (49) and (50), V may
actually be transformed into V.

V' = V.

The details of the proof are omitted here, because another

shorter method of demonsti-ation is to be given.

64.] Consider two surfaces (Fig. 30)

and V(x, y,z) = c-\r dc,

upon which F'is constant and which are moreover infinitely

near together. Let x, y, s be a given point upon the surface

F= c. Let r denote the rar

dius vector drawn to this

point from any fixed origin.

Then any point near by in

the neighboring surface V
= c + de may be represented

by the radius vector r + dr.

The actual increase of Ffrom

the first surface to the second

is a fixed quantity dc. The rate of increase is a vaiiable

r^JfiW*^'
'*"'''

Vix^r*)"

Fig. 30.
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quantity and depends upon the direction dt which is fol-

lowed when passing from one surface to the other. The rate

of increase will be the quotient of the actual increase d c and

the distance V^r • di between the surfaces at the point

X, y, z in the direction d r. Let n be a unit normal to the

surfaces and d n the segment of that normal intercepted

between the surfaces, n dn will then be the least value for

d r. The quotient ,

Cb C

^/d I • dT

will therefore be a maximum when dr is parallel to n and

equal in magnitude of d n. The expression

~ n (23)dn

is therefore a vector of which the direction is the direction of

most rapid increase of F'and of which the magnitude is the

rate of that increase. This vector is entirely independent of

the axes X, Y, Z. Let d c be replaced by its equal d V which

is the increment of Fin passing from the first surface to the

second. Then let V Fbe defined again as

dVVV=^-n. (24)
d n ^

Prom this definition, VF is certainly the vector which

gives the direction of most rapid increase of V and the rate

in that direction. Moreover V Fis independent of the axes.

It remains to show that this definition is equivalent to the one

first given. To do this multiply hj • dr.

VV-dr=^n.dT. (25)
d n

n is a unit normal. Hence n • c? r is the projection oi dx on

n and must be equal to the perpendicular distance d n between

the surfaces.
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dV
S7V.dx = -~dn = dV. (25)'

_ 5V SV 8V
But dV=yr-dx+^dl,+^dz,

where (dxy + (d yy +(dzy = dr.dT.

lid I takes on successively the values idx, jdy, k rf« the

equation (25)' takes on the values

5VVk« idx = -i^— dxdx

SV
^^'i^y = 3^dy (26)

5V
VF-'kdz = -p^dz.

dz

If the factors dx,dy,dzhQ cancelled these equations state

that the components VT. i, VF". j, VF. k of VF in the

i, j, k directions respectively are equal to

SV 3r 9V
d X 3y^ Sz'

VF= (VF. i) i + (VF. j) j + (VF. k) k.

dV 3V 5V
Hence by (26) VF=i^- + j^ + k ^. (21)

The second definition (24) has been reduced to the first

and consequently is equivalent to it.

*65.] The equation (26)' found above is often taken as a

definition of V F. According to ordinary calculus the deriv-

d 'u

ative -j-^ satisfies the equation
d X

dx--^=:dy.
dx
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Moreover this equation defines dy/dx. In a similar manner

it is possible to lay down the following definition.

Definition: The derivative VF of a scalar function of

position in space shall satisfy the equation

dT'VV=dV
for all values of d r.

This definition is certainly the most natural and important

from theoretical considerations. But for practical purposes

either of the definitions before given seems to be better.

They are more tangible. The real significance of this last

definition cannot be appreciated until the subject of linear

vector functions has been treated. See Chapter VII.

The computation of the derivative V of a function is most

frequently carried on by means of the ordinary partial

differentiation.

Example 1 : Let V(_x, y,z) =r = ^/x^ + y^+ s*.

g r .3r , 9r

dx dy 8z

^ . X . V

Hence V r =

z

Vx' + y-^ + a*

1

Vx^ + y^ + z^

and V r =
,

= -
VrTr r

The derivative of r is a unit vector in the direction of p.

This is evidently the direction of most rapid increase of r

and the rate of that increase.
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Example 2 : Let „ 1 1

r 's/x'^ + y2 + ga

„ 1 . a; . yV- = —1— 1
*

(a;2 + ya + «2)i
*

Hence V- = --g-———— (- ia; -j jr - ka)

^1 -r -r
and V-=-

r (r«r)' i r*

The derivative of 1/r is a vector whose direction is that

of — r, and whose magnitude is equal to the reciprocal of the

square of the length r.

n—

a

p
Example 3

:

Vi^ = nr '^ r = »ir" •

The proof is left to the reader.

Example 4- ' Let VC^t y^ 2) = log -y/aj^ + y'.

V log Vi'T+p = i _^^ + j _^_^ + k
x^ + y^ x^+ y^

a I ,,ax^ +
(ix+jy).

If r denote the vector drawn from the origin to the point

(x, y, z) of space, the function F may be written as

V(^sc, y, z) = log VrT — (k.r)^

and ix + }y = T — k k»r.

Hence V log Vx'^ + y'^ = j^~_(^^y3

r — k k«r

(r-kk.r).(r-kk.r)
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There is another method of computing V which is based

upon the identity

dx'Vr=dV.

Example 1 : Let V = Vr-r = r.

VrVr V r«r

Hence VF= -;= = -•
V r-r r

Example 2 : Let F= r • a, where a is a constant vector.

d r=dT'a = di'W.

Hence VF=a.

Example 3: Let F= (rxa) • (rxb), where a and b are

constant vectors.

F= r-r a«T) — r«a r«b.

dV = 2dT'i a«b — dr«a r«b — dr»b r«a = di'W.

Hence VF= 2 r a»b — a r-b — b r.a

VF= (r a.b — a r.b) + (r a.b — br.a)

= bx(rxa) + a X (rxb).

Which of these two methods for computing V shall be

applied in a particular case depends entirely upon their

relative ease of execution in that case. The latter method is

independent of the coordinate axes and may therefore he

preferred. It is also shorter in case the function F can be

expressed easily in terms of r. But when V cannot be so

expressed the former method has to be resorted to.

*66.] The great importance of the operator V in mathe-

matical physics may be seen from a few illustrations. Sup-

pose T (x, y, a) be the temperature at the point x, y, zot a.
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heated body. That direction in which the temperature de-

creases most rapidly gives the direction of the flow of heat.

V T, as has been seen, gives the direction of most rapid

increase of temperature. Hence the flow of heat f is

t = -hVT,

where ft is a constant depending upon the material of the

body. Suppose again that V be the gravitational potential

due to a fixed body. The force acting upon a imit mass at

the point (.», y, z) is in the direction of most rapid increase of

potential and is in magnitude equal to the rate of increase

per unit length in that direction. Let F be the force per unit

mass. Then
F = VF.

As different writers use different conventions as regards the

sign of the gravitational potential, it might be well to state

that the potential Preferred to here has the opposite sign to

the potential energy. If W denoted the potential energy of

a mass m situated at x, y^ z, the force acting upon that mass

would be
T = -VW.

In case V represent the electric or magnetic potential due

to a definite electric charge or to a definite magnetic pole re-

spectively the force F acting upon a unit charge or unit pole

as the case might be is

F = -VF.

The force is in the direction of most rapid decrease of

potential. In dealing with electricity and magnetism poten-

tial and potential energy have the same sign; whereas in

attraction problems they are generally considered to have

opposite signs. The direction of the force in either case is in

the direction of most rapid decrease of potential energy. The

difference between potential and potential energy is this.

10
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Potential in electricity or magnetism is the potential energy

per unit charge or pole ; and potential in attraction problems

is potential energy per unit mass taken, however, with the

negative sign.

*67.] It is often convenient to treat an operator as a

quantity provided it obeys the same formal laws as that

quantity. Consider for example the partial differentiators

3x 9y 3z

As far as combinations of these are concerned, the formal laws

are precisely what they would be if instead of differentiators

three true scalars

a, i, c

were given. For instance

the commutative law

9 9 9 9 ^ ^

9x 9y 9y d

X

^ {9 9\ f 9 9 \9 ,.., J.

-x\ry9^r\J-x9-y)9^~"'^^'^ = ^''^^''

the associative law

9

9

and the distributive law

9 f 9 9\ 9 9^99 ,_, ,^
9x\9y 9zJ 9x9y 9x9z ^ ^ > ^

hold for the differentiators just as for scalars. Of course such

formulae as

9 9

9x 9x '

where m is a function of x cannot hold on account of the

properties of differentiators. A scalar function u cannot be

placed under the influence of the sign of differentiators.

Such a patent error may be avoided by remembering that an

operand must be understood upon which 9/9 a; is to operate.
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In the same way a great advantage may be obtained by

looking upon

Sx 3y dz

as a vector. It is not a true vector, for the coefEcients

5 d d

dx 3y 9z

are not true scalars. It is a vector differentiator and of

course an operand is always implied with it. As far as formal

operations are concerned it behaves like a vector. For

instance

V(m + t)) = V« + Wv,

V(ttv) = (yu)v + v,(yv),

c V u — V (c m),

if u and v are any two scalar functions of the scalar variables

X, y, z and if c be a scalar independent of the variables with

regard to which the differentiations are performed.

68.] If A represent any vector the formal combination

A- Vis

A.V = ^./^+^,^-?;+^.g^ (27)

provided A = -4i i + -dj j + -4g k.

This operator A • V is a scalar differentiator. When applied

to a scalar function V (x, y, z) it gives a scalar.

Suppose for convenience that A is a unit vector a.
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where a^, a„,ag are the direction cosines of the line a referred

to the axes^X, F, Z. Consequently (a- V) F appears as the

vfell-knownSdirectional derivative of V in the direction a.

This is often written

It expresses the magnitude of the rate of increase of V in

the direction a. In the particular case where this direction is

the normal n to a surface of constant value of V, this relation

becomes the normal derivative.

if jij, Tig, n^ be the direction cosines of the normal.

The operator a • V applied to a scalar function of position

V yields the same result as the direct product of a and the

vector V V.

(a.V)r=:a.(Vr). (30)

For this reason either operation may be denoted simply by

a-vr

without parentheses and no ambiguity can result from the

omission. The two different forms (a . V) Fand a • (V F)

may however be interpreted in an important theorem,

(a . V) F is the directional derivative of F in the direction

a. On the other hand a • (V F) is the component of VF in

the direction a. Hence: The directional derivative of Fin

any direction is equal to the component of the derivative

VF in that direction. If Fdenote gravitational potential the

theorem becomes : The directional derivative of the potential

in any direction gives the component of the force per unit

mass in that direction. In case Fbe electric or magnetic

potential a difference of sign must be observed.
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Vector Functions of Position in Space

69.] A vector function of position in space is a function

V {x, y, z)

which associates with each point x, y, z in space a definite

vector. The function may be broken up into its three com-

ponents

V {x, y, z) - Fi (x, y,z)i+ V^ (x, y, z) j + V^ (x, y, s) k.

Examples of vector functions are very numerous in physics.

Already the function VF has occurred. At each point of

space VF has in general a definite vector value. In mechan-

ics of rigid bodies the velocity of each point of the body is a

vector function of the position of the point. Fluxes of heat,

electricity, magnetic force, fluids, etc., are all vector functions

of position in space.

The scalar operator a • V may be applied to a vector func-

tion V to yield another vector function.

Let V = Fj {x, y, 2), i -I- Fg (», y,z)i+ Fj (x, y, z) k

and a = «! i + ^2 J + "^3 ^'

Then »-^ = «i^ + ^'»5^+'^3 5".

(a.V)V = (a.V) Fi i-l-(a.V) Fjj + (a.V)F8 k

/ 5F 5Fi ,

5FA.
and (a.V)V=(«:^+«,y^ + «3-^jx

/ 5F2 SF2
,

9V^\.

/ 3V^ ^ 5Fg 9V^\

(31)
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This may be written in the form

(•v)v ='^i.^'i.^- (SI)'

Hence (a • V) V is the directional derivative of the vector

function V in the direction a. It is possible to write

(a - V) V = a . V V
without parentheses. For the meaning of the vector symbol

V when applied to a vector function V has not yet been

defined. Hence from the present standpoint the expression

a • VV can have but the one interpretation given to it by

(a . V) V.

70.] Although the operation V V has not been defined and

cannot be at present,^ two formal combinations of the vector

operator V and a vector function T may be treated. These

are the (formal) scalar product and the (formal) vector prod-

uct of V into V. They are

V.Y=(i^+3^ + kf).Y (32)

and Vx V = fi;^ + j;^ + k^^ XV. (33)

V • V is read del dot V; and V x V, del cross V.

9 d S
The differentiators —- , -r— . ;r-, being scalar operators,pass

dx dy d z

by the dot and the cross. That is

3V 5V SYVxV=ix^ +jx^ + kX^. (33/
5 a! 3 y 3 z

These may be expressed in terms of the components F^, V^, Fj

of V.

1 A definition of A V will be given in Chapter VIL
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Now

Then

Hence

Moreover

dx 9x 9x 9x

dy''
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It is to be understood that the operators are to be applied to

the functions Fj, V^, V^ when expanding the determinant.

From some standpoints objections may be brought forward

against treating V as a symbolic vector and introducingV - V

and V X V respectively as the symbolic scalar and vector

products of V into V. These objections may be avoided by.

simply laying down the definition that the symbols V • and

V X, which may be looked upon as entirely new operators

quite distinct from V, shall be

V.v = i.|^ + j.^-^ + k,^ (32y
9x dy 5«

3V 3V 5V
and VxV = ix^+jx^-fkx^- (33)'

doc 9y 9z ^ '

But for practical purposes and for remembering formulae it

seems by all means advisable to regard

V= 1
1-

J

1- k—
9x 3y 9z

as a symbolic vector differentiator. This symbol obeys the

same laws as a vector just in so far as the differentiators

n—) -yi
—

»

li— obey the same laws as ordinary scalar quantities.
3 X d y 3 z

71.] That the two functions V • V and V x V have very

important physical meanings in connection with the vector

function V may be easily recognized. By the straight-

forward proof indicated . in Art. 63 it was seen that the

operator V is independent of the choice of axes. From this

fact the inference is immediate thatV • V and V x V represent

intrinsic properties of V invariant of choice of axes. In order

to perceive these properties it is convenient to attribute to the

function V some definite physical meaning such as flux or

flow of a fluid substance. Let therefore the vector V denote
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at each point of space the direction and the magnitude of the

flow of some fluid. > This may be a material fluid as water

or gas, or a ^ctitiousyone as heat or electricity. To obtain as

great clearness as possible let the fluid be material but not

necessarily restricted to incompressibility like water.

Then V-V = i.^+3.|^ + k.^
3x 3y Qz

is called the divergence of V and is often written

V. V=div V.

The reason for this term is that V-V gives at each point the

rate per unit volume per unit time at which fluid is leaving
|

that point— the rate of diminution of density. To prove i

this consider a small cube of matter (Fig. 31). Let the edges

of the cube be dx, dy, and dz respectively. Let

V (x, y, 3) = Fj {x, y,z)i+ V^ (x, y,z)i + Fg (x, y, z) k.

Consider the amount of fluid which passes through those

faces of the cube which are parallel to the Z^-plane, i. e,

perpendicular to the X
axis. The normal to the

face whose x coordinate is

the lesser, that is, the nor-

mal to the left-hand face

of the cube is — i. The flux

of substance through this

face is

-i.V (a;, y, a) dy dz.

The normal to the oppo- ^
^^^ ^^

site face, the face whose

X cobrdinate is greater by the amount dx, is + i and the flux

through it is therefore

— i «/.> e/2*

^JfA
s- j (fjf t/e

x4dx , yg.
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r 9Y ~\

i-Y (x + dx,y,z)dydz = i' Y{x, y, z) +— dx \ dy dz

3V
= i.Y (x,y,z) dy dz + i'-—-dx dy dz.

cl OS

The total flux outward from the cube through these two

faces is therefo^ the algebraic sum of these quantities. This

is simply

1 . -;;— dx dy dz = -^ dx dy dz.
d X d X

In like manner the fluxes through the other pairs of faces of

the cube are

i . -:— dx dy dz and k • -=— dx dy dz,
3 y OS

The total flux out from the cube is therefore

7^- + J •
o

\-s.' ~i^]dxdydz.
8 X 8 y 8 z J

This is the net quantity of fluid which leaves the cube per

unit time. The quotient of this by the volume dx dy dz of

the cube gives the rate of diminution of density. This is

SV 5V 5V_5F, 5F 5F-3

8

X

8 y 8 z 8 X dy 8z

Because V • V thus represents the diminution of density

or the rate at which matter is leaving a point per unit volume

per unit time, it is called the divergence. Maxwell employed

the term convergence to denote the rate at which fluid ap-

proaches a point per unit volume per unit time. This is the

negative of the divergence. In case the fluid is incompressible,

as much matter must leave the cube as enters it. The total

change of contents must therefore be zero. For this reason

the characteristic differential equation which any incompres-

sible fluid must satisfy is

V-V =
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where V is the flux of the fluid. This equation is often

known as the hydrodynamic equation. It is satisfied by any
flow of water, since water is practically incompressible. The
great importance of the equation for work in electricity is due

to the fact that according to Maxwell's hypothesis electric dis-

placement obeys the same laws as an incompressible fluid. If

then D be the electric displacement,

div D = V . D = 0.

72.] To the operator V x Maxwell gave the name curl.

This nomenclature has become widely accepted.

V X V = curl V.

The curl of a vector function V is itself a vector function

of position in space. As the name indicates, it is closely

connected with the angular velocity or spin of the flux at

each point. But the interpretation of the curl is neither so

easily obtained nor so simple as that of the divergence.

Consider as before that V represents the flux of a fluid.

Take at a definite instant an infinitesimal sphere about any

point (x, y, a). At the next instant what has become of the

sphere ? In the first place it may have moved off as a whole

in a certain direction by an amount d r. In other words it

may have a translational velocity of dxjdt. In addition to

this it may have undergone such a deformation that it is no

longer a sphere. It may have been subjected to a strain by

virtue of which it becomes slightly ellipsoidal in shape.

Finally it may have been rotated as a whole about some

axis through an angle dw. That is to say, it may have an

angular velocity the magnitude of which is dwjdt. An
infinitesimal sphere therefore may have any one of three

distinct types of motion or all of them combined. First, a

translation with definite velocity. Second, a strain with three

definite rates of elongation along the axes of an elHpsoid.
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Third, an angular velocity about a definite axis. It is this

third type of motion which is given by the curl. In fact,

the curl of the flux V is a vector which has at each point of

space the direction of the instantaneous axis of rotation at

that point and a magnitude equal to twice the instantaneous

angular velocity about that axis.

The analytic discussion of the motion of a fluid presents

more difficulties than it is necessary to introduce in treating

the curl. The motion of a rigid body is sufficiently complex

to give an adequate idea of the operation. It was seen (Art.

51) that the velocity of the particles of a rigid body at any

instant is given by the formula

V = Vo + a X r.

curl v = Vxv = VxVo + Vx(axr).

Let a = «! i + 0^2 j + as k

expand V X (a X r) formally as if it were the vector triple

product of V, a, and r. Then

V X V = V X Vo + (V • r) a — (V . a) r.

Vo is a constant vector. Hence the term V x Vo vanishes.•o

3a; 52/ 3s_„
dx ay az

As a is a constant vector it may be placed upon the other side

of the differential operator, V • a = a • V.

d^Vr = (ai^+ a2T- + «3X-V = <*ii + a2J+«3^ = a-

\ 8 X dy 9z J

Hence Vxv = 3a — a = 2a.

Therefore in the case of the motion of a rigid body the curl

of the linear velocity at any point is equal to twice the

angular velocity in magnitude and in direction.
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V X V = curl V = 2 a, t'--

a = 2Vxv = 2 curl v.

T = v„ + ^ (V X V) X r = Vo + ^
(curl v) x r. (34)

The expansion of V X (a x r) formally may be avoided by

multiplying a X r out and then applying the operator V X to

the result.

73.] It frequently happens, as in the case of the applica-

tion just cited, that the operators V»Vv V X, have to be

applied to combinations of scalar functions, vector functions,

or both. The following rules of operation will be found

useful. Let u, v be scalar functions and u, v vector func-

tions of position in space. Then

V (u + v') = Vu + Vv (35)

V.(u + v)=V.u + V.v (36)

Vx(u + v)=Vxu + Vxv (87)

V (uv')=vVti + uVv (38)

V.(mv) = Vwv + w V . V (39)

Vx(mv) = Vmxv + mVxv (40)

V(u.v) =T.Vu + u.Vv (41)

+ T X (V X U) + 11 X (V X v)i

V.(uxv)=v.Vxu — u.Vxv (42)

Vx(uxv)=v.Vu — vV-u-u.Vv + uV.v.i (43)

A word is necessary upon the matter of the interpretation

of such expressions as

Vuv, Vwv, Vm X V.

The rule followed in this book is that the operator V applies

to the nearest term only. That is,

* By Art. 69 the expressions v • V" »"* u •V are to be interpreted as
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V uv = (Vu") V

V tt • V = (V m) • V

V« X v = (Vm) X V.

If V is to be applied to more than the one term which follows

it, the terms to which it is applied are enclosed in a paren-

thesis as upon the left-hand side of the above equations.

The proofs of the formulae may be given most naturally

by expanding the expressions in terms of three assumed unit

vectors i, j, k. The sign 2 of summation will be found con-

venient. By means of it the operators V? Vv 'K X take the

form

^ dx

^ dx

The summation extends over x, y, z.

To demonstrate Vx (%v) = VMXV-f-%Vxv.

vx(.,) = 2ix(|^v)+2ix(»?,)

=201-:)
9u\ . .^A . 9v

dx
X V + y.ui X r—

Hence Vx (ttv) = VMXv-|-MVxv.

To demonstrate

V (u • t) = V . V u -1- u . V V + V X (V X u) 4- u X (V X v).

U
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V(u.v) = :^iA(u.y)=2ir|^-v + u.|T'\'^ 9x^ -' -^ \9x QxJ

V(u.v)= >i — .v+T iu.—'^ dx -^ 3x

Now
5u ,^ Su _- 5uIXTX(Vxu) = vx2ix^=2v.^i-2v-i^"

;:^l = VX(VXU)+>V.i--ax ^ -^ 9x

5u
0' 2T«T-i = v X (V X u) + vVu.

In like manner ^'^'T^i^'^x (Vxv) + u.Vv.

Hence V (u^v) = v Vn + u^ Vv

+ V X (V X u) + u X (V X v).

The other formulae are demonstrated in a similar manner.

74.] The notation!

V(u.v)„ (44)

will be used to denote that in applying the operatorV to the

product (u • v), the quantity u is to be regarded as constant.

That is, the operation V is carried out only partially upon

the product (u • v). In general if V is to be carried out

partially upon any number of functions which occur after

it in a parenthesis, those functions which are constant for the

dififerentiations are written after the parenthesis as subscripts.

Let u = Mj i + ^2 J + '^a ^»

v = 'yj i + v^} + v^}si.

1 This idea and notation of a partial V so to speak may be avoided by means

of the formnla 41. Bnt a certain amonnt of compactness and simplicity is

lost thereby. The idea ofV (ii ' )<> >s snrely no more complicated than n •V v or

V X (V X n).
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then U'V = UiVi + u^v^ + u^Vg

and V(Ti.v) = 2i7r (^i^i''''^2«2+'*3^8)«

_^ / 9vi 9v„
,

SiJgN

But V(u.v\ = 2i risi + ^^5^+"«5^j

and V(n.v). = :^i(.,-^+.,^V.3g^}-

Hence V(ti.v) = v^ Vmj + i>2^"2 + ^'s^^s

But V(u.v)„ = «iV'yi + M2Vi;2 + M3Vz;3 (44)'

and V(xL'V^y = ViVuj^ + v^Vv,^ + V3.Vug.

Hence V (u • v) = V (u . v)„ + V (u . v)

^

(45)

This formula corresponds to the following one in the notar

tion of differentials

fZ (u . v) = d (u . v)„ + c? (u • v),

or £? (u • v) = u • (Z V + (^ u • V.

The formulae (35)-(43) given above (Art. 73) may be

written in the following manner, as is obvious from analogy

with the corresponding formulae in differentials

:

V(M + ») = V(« + i;)„ + V(M + t>), (35)'

V.(u + v) = V.(u + v)„ + V.(u + v), (36)'

V X (u + v) = V X (u + v)„ + V X (u + v)v (37)'
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^(y,v) = V(uvX + V(uv\ (38)'

V . (tt v) = V . (m v)„ + V . (u V), (39)'

V X (m v) = V X (m v)„ + V X (u v)v (40)'

V(u.v) = V(u.v)„ + V(u.v)v (41)'

V. (u X v) = V. (u X v)„ + V. (u X v)v (42)'

V X (u X v) = V X (u X v)„ + V X (u X v)^. (43)'

This notation is particularly useful in the case of the

scalar product u«v and for this reason it was introduced.

In almost all other cases it can be done away without loss of

simplicity. Take for instance (43)'. Expand V X (u x v)„

formally.

V X (u X v)„ = (V . T) u - (V • u) V,

where it must be understood that u is constant for the differ-

entiations which occur in V. Then in the last term the

factor u may be placed before the sign V. Hence

V X (u X v)n = u V • v--» u • V V.

In like manner V x (u x v)^ = v«Vu — vV-u.

Hence Vx(uxv)=v«Vti — vV«u — n«Vv + uV»v.

75.] There are a number of important relations in which

the partial operation V (u • v)^ figures.

ux (Vxv) = V(u.t)„-u.Vv, (46)

or V(u.t)„ = u.Vv + ux (V X v), (46)'

or u.Vv = V(u.v)„+ (V XT) xu. (46)"

The proof of this relation may be given by expanding in

terms of i, j, k. A method of remembering the result easily

is as follows. Expand the product

u X (V X v)

11
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formally as if V, u, v were all real vectors. Then

ux(Vxv) = u«vV — n.Vv.

The second term is capable of interpretation as it stands.

The first term, however, is not. The operator V has nothing

upon which to operate. It therefore must be transposed so

that it shall have u • v as an operand. But u being outside

of the parenthesis in u x (V x v) is constant for the differen-

tiations. Hence
u • V V = V (u • v)n

and u X (V X v) = V (u . v)„ - u . V V. (46)

If u be a unit vector, say a, the formula

a.Vv = V(a.v)a+ (Vx v) X a (47)

expresses the fact that the directional derivative a •V v of a

vector function v in the direction a is equal to the derivative

of the projection of the vector v in that direction plus the

vector product of the curl of v into the direction a.

Consider the values of v at two neighboring points.

V (x, y, z)

and v(x + dx, y + dy, z + dz)

dv = v (_x+ dx,y + dy, z + dz') — v (a;, y, s).

Let V = Vii + v^j + v^k

dv = dv^i + dv^i + dv^k..

But by (25)' dvi = dT'Vvi

dv2 = dr-V v^

dvg = di'V Vg.

Hence dv = dT' (V v^i + V v^j + Vv^ls.').

Hence <^ v = t^ r • V v, <' — v^

By (46)" dv = V (dr. v)^, + (V x v) x di.^\ (48)
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Or if Vo denote the value of v at the point (x, y, z) and v the

value at a neighboring point

v = Vo + V(cir.v)a,+ (Vx v) xrfr. (49)

This expression of v in terms of its value Vo at a given point,

the dels, and the displacement diis analogous to the expan-

sion of a scalar functor of one variable by Taylor's theorem,

/(a3)=/(a;„)+/'(iBo)da3.

The derivative of (r • v) when v is constant is equal to v.

That is V (r . v)y = v.

For V (r . v)t = V • V r — (V X r) x v,

v = «ii + VgJ + ^s^'

__ 5 , S , 9

d X 3 y d z

x = xi-\-y^ + zls.,

y. Vr = I'll + v^i + Wgk = V,

V X r = 0.

Hence V (r • v)^ = v.

In like manner if instead of the finite vector r, an infinitesimal

vector drhe substituted, the result stiU is

V (di- v)y = v,

By(47) v = Vo + V((ir.v)d,+ (Vx v) x<ir

V (rfr. v) = V (cZr.v),,' + V (c?r . vV
Hence V (dr- v)^, = V (d r • v) — v.

Substituting

:

v = ^v„ + lv((ir.v) + ^(Vxv)xc?r. (50)

This gives another form of (49) which is sometimes more

convenient It is also slightly more symmetrical.
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* 76.] Consider a moving fluid. Let v (a;, y, z, f) be the

velocity of the fluid at the point (x, y, z) at the time t. Sur-

round a point {pa, ya, z^) with a small sphere.

dT'di = c^-

At each point of this sphere the velocity is

V = Vo + £? r • V V.

In the increment of time B t the points of this sphere will have

moved the distance

(Vo + <Z r • V v) S ^.

The point at the center will have moved the distance

The distance between the center and the points that were

upon the sphere of radius di a,t the commencement of the

interval S t has become at the end of that interval B t

dr' = di + dT-VvSt.

To find the locus of the extremity of cZr' it is necessary to

eliminate d r from the equations

dt' = dT + dT'Vv8t,

e^ = di' dr.

The first equation may be solved for d r by the method of

Art. 47, page 90, and the solution substituted into the second.

The result will show that the infinitesimal sphere

dr-dr = c^

has been transformed into an ellipsoid by the motion of the

fluid during the time B t.

A more definite account of the change that has taken place

may be obtained by making use of equation (50)
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V = 1^0+ |V (d r . v) + |(V X v) X dr,

T = Vo + |[V(cZr.v)-vJ +|(Vxv)xtZr;

or of the equation (49)

v = Vo+V(rfr.v)^,+ (Vxv)xdr,

v= v„+ [V(dr.v)^,+ i(Vxv)x dr]+|(Vx v) x «?r.

The first term Vo in these equations expresses the fact that

the infinitesimal sphere is moving as a whole with an instan-

taneous velocity equal to Vo. This is the translational element

of the motion. The last term

|(Vxv)xdr = | curl v x df r

shows that the sphere is undergoing a rotation about an

instantaneous axis in the direction of curl v and with an angu-

lar velocity equal in magnitude to one half the magnitude of

curl V. The middle term

|v((Zr.v)-v„,

OP V(c?r.v)dr-| (Vx v)x <ir

expresses the fact that the sphere is undergoing a defor-

mation known as Jiomogeneous strain by virtue of which it

becomes ellipsoidal. For this term is equal to

dxVv-i + dyVv^ + dzVvg,

if v^, v^, Vg be respectively the components of v in the direc-

tions i, j, k. It is fairly obvious that at any given point

(a!o, ^01 '2!o) a set of three mutually perpendicular axes i, j, k

may be chosen such that at that point Vv^, Vv^, Vv^ are re-
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spectively parallel to them. Then the expression above

becomes simply

3a! " 9y 9z

The point whose coordinates referred to the center of the

infinitesimal sphere are

dx, dy, dz

is therefore endowed with this velocity. In the time BtiX

will have moved to a new position

The totality of the points upon the sphere

dx » dx = d x^ + d y^ + d z^ = c^

goes over into the totality of points upon the ellipsoid of

which the equation is

(-1^-) 0-1?") 0-'^->
The statements made before (Art. 72) concerning the three

types of motion which an infinitesimal sphere of fluid may

possess have therefore now been demonstrated.

77.] The symbolic operator V may be applied several times

in succession. This wiU correspond in a general way to

forming derivatives of an order higher than the first. The

expressions found by thus repeating V will all be independ-

ent of the axes because V itself is. There are six of these

dels of the second order.

Let V (x, y, s) be a scalar function of position in space.

The derivative VF is a vector function and hence has a curl

and' a divergence. Therefore

V-VF, V X VF
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are the two derivatives of the second order which may be

obtained from V.

V-VF=divVr (61)

VxVF=curlVF. (52)

The second expression V xVVvanishes identically. That is,

the derivative of any scalar furwtion Vpossesses no curl. This

may be seen by expanding V x VF in terms of i, j, k. All

the terms cancel out. Later (Art. 83) it will be shown con-

versely that if a vector function W possesses no curl, i. e. if

V X W^= curl W = 0, then W = VV,

W is the derivative of some scalar function F.

The first expression V • V F when expanded in terms of

i, j, k becomes
9W 9^ 5^V

3^ "^ Sp
"*"

'S^
V-VF=^4-^ +^- (51)'

SymboUcaUy, V - V =^ +—, +
9x^ 9y^ 9z^

The operator V • V is therefore the well-known operator of

Laplace. Laplace's Equation

^. VF=^ +^ +^ = (53)

becomes in the notation here employed

V-VF=0. (53)'

When applied to a scalar function F the operator V • V yields

a scalar function which is, moreover, the divergence of the

derivative.

Let T be the temperature in a body. Let c be the con-

ductivity, p the density, and k the specific heat. The

flow f is

i=-cVT.
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The rate at which heat is leaving a point per unit volume per

unit time is V • f. The increment of temperature is

dT= -V'{ dt.
pk

dt pk

This is Fourier's equation for the rate of change of tempera-

ture.

Let V be a vector function, and F^, F^, V^ its three com-

ponents. The operator V •V of Laplace may be applied to V.

V-VV = V-Vrii + V-VTjj + V-VFgk (54)

If a vector function V satisfies Laplace's Equation, each of

its three sdalar components does. Other dels of the second

order may be obtained by considering the divergence and curl

of V. The divergence V • V has a derivative

VV.V = VdivV. (55)

The curl V x V has in turn a divergence and a curl,

and V-VxV, VxVxV.
V - V X V = div curl V (56)

and V X V X V = curl curl V. (57)

Of these expressions V • V x V vanishes identically. That is,

the divergence of the curl of any vector is zero. This may be

seen by expanding V •V x V in terms of i, j, k. Later (Art.

83) it will be shown conversely that if the divergence of a

vector function W vanishes identically, i. e. if

V •W = div W = 0, then W = V X V = curl V,

W is the curl of some vector function V.
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If the expression V x (V x V) were expanded formally

according to the law of the triple vector product,

Vx(VxV) = V.VV-V-VV.

The terms V •W is meaningless until V be transposed to

the beginning so that it operates upon V.

Vx Vx V = VV-V-V-VV, (58)

or curl curl V = VdivV — V.VV. (68)'.

—

This formula is very important. It expresses the curl of the

curl of a vector in terms of the derivative of the divergence

and the operator of Laplace. Should the vector function V
satisfy Laplace's Equation,

V VV = and

ciu:l curl V = V div V.

Should the divergence of V be zero,

curl curl V= — V - VV.

Should the curl of the curl of V vanish,

V div V = V - VV.

To sum up. There are six of the dels of the second order.

V.VF, VxVF,

V.VV, V^-V, V-VxV, VxVxV.
Of these, two vanish identically.

VxVV = 0, V.VxV = 0.

A third may be expressed in terms of two others.

Vx Vx V = VV-V-V-VV. (58)

The operator V • V is equivalent to the operator of Laplace.
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* 78.] The geometric interpretation of V«Vm is interesting.

It depends upon a geometric interpretation of the second

derivative of a scalar function u of the one scalar variable x.

Let Ui be the value of u at the point a;<. Let it be required

to find the second derivative of u with respect to x at the

point Xq. Let Xj^ and x^ be two points equidistant from Xg.

That is, let

X^ — Xa = Xo — Xi = a.

Then

u, + u„

is the ratio of the difference between the average of u at the

points a!j and x^ and the value of u at x^ to the square of the

distance of the points x^, x^ from x^. That

l^'^^LiM 2

2da;2 a=0 a^

is easily proved by Taylor's theorem.

Let M be a scalar function of position in space. Choose

three mutually orthogonal lines i, j, k and evaluate the

expressions

S^u 3^u 9^u
3*2"' ^' J^'

Let x^ and x^hQ two points on the line 1 at a distance a from

Xa ; x^ and x^, two points on j at the same distance a from

Xo ; Xi and jCg, two points on k at the same distance a from Xg.

l5^u
2 Sa!2
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2 5s2 a=
Add:

1 /52m 32^ 52«\_ 1 „ „

_LiM r 6
"1

a=0\_ a2 J-

As V and V« are independent of the particular axes chosen,

this expression may be evaluated for a diiferent set of axes,

then for still a different one, etc. By adding together all

these results

1*1 + M2 + • • 6 » terms
a

' '^0

lV'Vu=^^ ^

Let n become infinite and at the same time let the different

sets of axe's point in every direction issuing from x^. The

fraction

Mj + M3 + • • • 6 M terms

6n

then approaches the average value of u upon the surface of a

sphere of radius a surrounding the point x^. Denote this

by Mo-

^V.Vm=L^,^^S^°.
6 a==0 a^

V - V M is equal to six times the limit approached by the ratio

of the excess of u on the surface of a sphere above the value

at the center to the square of the radius of the sphere. The

same reasoning held in case m is a vector function.

If u be the temperature of a body V»Vm (except for a

constant factor which depends upon the material of the
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body) is equal to the rate of increase of temperature (Art.

77). If V 'Vu\s positive the average temperature upon a

small sphere is greater than the temperature at the center.

The center of the sphere is growing warmer. In the case

of a steady flow the temperature at the center must remain

constant. Evidently therefore the condition for a steady

flow is

V - V M = 0.

That is, the temperature is a solution of Laplace's Equation.

Maxwell gave the name concentration to —V • V m whether

M be a scalar or vector function. Consequently V • V m may

be called the disjpersion of the function u whether it be scalar

or vector. The dispersion is proportional to the excess of

the average value of the function on an infinitesimal surface

above the value at the center. In case m is a vector function

the average is a vector average. The additions in it are

vector additions.

SUMMAKY OF ChAPTBK III

If a vector r is a function of a scalar t the derivative of

r with respect to i is a vector quantity whose direction is

that of the tangent to the curve described by the terminus

of r and whose magnitude is equal to the rate of advance of

that terminus along the curve per unit change of t. The

derivatives of the components of a vector are the components

of the derivatives.

A combination of vectors or of vectors and scalars may be

differentiated just as in ordinary scalar analysis except that

the differentiations must be performed in situ.
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d' ,^ da , dh_(a.b)=-.b + a.-, (8)

^(axb)=-xb+ax^, (4)

or d(a.''b) =d&''b + z • dh, (3)'

d{a,x'b) = da,x'b + &xd'b, (4)'

and so forth. The differential of a unit vector is perpendicu-

lar to that vector.

' The derivative of a vector r with respect to the arc s of

the curve which the terminus of the vector describes is

the unit tangent to the curves directed toward that part of the

curve along which s is supposed to increase.

The derivative of t with respect to the arc s is a vector whose

direction is normal to the curve on the concave side and

whose magnitude is equal to the curvature of the curve.

d s d s^

The tortuosity of a curve in space is the derivative of the

unit normal n to the osculating plane with respect to the

arc 8.

ds~ dsKda'^ ds^' ^/'GTc)' ^ ^

The magnitude of the tortuosity is

rdr d^T d^r-\

[Ts dV^ dTs^} ^ -^

T =
d^T d^T

ds^' dl^
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If r denote the position of a moving particle, t the time,

V the velocity, A the acceleration,

dx . ,^..

d s

'"^dTt'
(16)

dv d^ T .. ,^„
'^ = --Tt=di^ =

'- (^«)

The acceleration may be broken up into two components of

which one is parallel to the tangent and depends upon the

rate of change of the scalar velocity v of the particle in its

path, and of which the other is perpendicular to the tangent

and depends upon the velocity of the particle and the curva-

ture of the path.

A = s t + 1)2 c. (19)

Applications to the hodograph, in particular motion in a

circle, parabola, or under a central acceleration. Application

to the proof of the theorem that the motion of a rigid body

one point of which is fixed is an instantaneous rotation about

an axis through the fixed point.

Integration with respect to a scalar is merely the inverse

of differentiation. Application to finding the paths due to

given accelerations.

"^ The operator V applied to a scalar function of position in

space gives a vector whose direction is that of most rapid

increase of that function and whose magnitude is equal to

the rate of that increase per unit change of position in that

direction

9 X " d y Sz

V = il- + j±. + k^. (22)
9 X ' 9 y 9 z
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The operator V is invariant of the axes i, j, k. It may be

defined by the equation

vr=^., (24)

or ^V.dr = dV. (25)'

Computation of the derivative V F" by two methods depend-

ing upon equations (21) and (25)'. Illustration of tiie oc-

currence of V in mathematical physics.

V may be looked upon as a fictitious vector, a vector

differentiator. It obeys the formal laws of vectors just in

so far as the scalar differentiators oi 9/9 x, 9 /9y, 91 9 z obey

the formal laws of scalar quantities

9V 9V 9V

If a be a unit vector a • V F" is the directional derivative of V
in the direction a.

a.VF=(a-V) F=a.(VF). (30)

If V is a vector function a •W is the directional derivative

of that vector function in the direction a.

V.V=i.|I + j.£2 + t.|I, (S2).
d X 9 y d z

-9Y S V 9 VV><V=ix|^ +jx|^ + tx|^ (88/

V.V=|5 + |5+«^., (82)"
9 cc 9 y 9 z

\dy 9z)^^\9z 9x)

\9x 9yJ
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Proof that V • V is the divergence of V and V x V, the cwd

ofV.
V.V = divV,

V X V = curl V.

V(u + v') = Vu + Vv, (35)

V . (u + v) = V - u + V . V, (36)

Vx(u + v)=Vxu + Vxv, (37)

V(uvy=vVu + uVv, (38)

V . (« v) = V ti • V + M V T, (39)

Vx(mv) = Vmxv + mVxv, (40)

V(ti.v) = vVu + u.Vv + vx (V X u)

+ ux(Vxv), (41)

V.(tixv) = v,Vxu-u.Vxv, (42)

Vx(iixv) = v.Vu — vV.u-U'Vt + uV-t. (43)

Introduction of the partial del, V (u • v)„, in which the dif-

ferentiations are performed upon the hypothesis that u is

constant.

u X (V X v) =V (u • v)„- u • Vv. (46)

If a be a unit vector the directional derivative

a . V V = V (a . v)a + (V X v) X a. (47)

The expansion of any vector function v in the neighborhood

of a point (xa, y^ «„) at which it takes on the value of v„ is

v = To + V (dr.v)d,+ (Vxv) X dr, (49)

or v = ^Vo + V(c?r.v)+|(Vx v) xdr. (50)

Application to hydrodynamics.

The dels of the second order are six in number.
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VxVr=curlVr=0, (52)

S^V d^V 3^V

V. V is Laplace's operator. If V'VF=0, F" satisfies La-

place's Equation. The operator may be applied to a vector.

VV.V = VdivV, (55)

V • V X V = div curi V = 0, (56)

V X V X V= curl curl V = VV.V-V-VV. (58)

The geometric interpretation of V •V as giving the disper-

sion of a function.

EXEBCIBBS ON CHAirrBE III

1. Given a particle moving in a plane curve. Let the

plane be the ij-plane. Obtain the formulae for the compo-

nents of the velocity parallel and perpendicular to the radius

vector r. These are

i-p ^ k X r,

where 6 is the angle the radius vector r makes with i, and k

is the normal to the plane.

2. Obtain the accelerations of the particle parallel and

perpendicular to the radius vector. These are

(r-re^')-, (rO+ihe^kx-.

Express these formulae in the usual manner in terms of x

and y.

12
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3. Obtain the accelerations of a moving particle parallel

and perpendicular to the tangent to the path and reduce the

results to the usual form.

4. If r, <j), he a, system of polar coordinates in space,

where r is the distance of a point from the origin, <^ the

meridianal angle, and 6 the polar angle ; obtain the expressions

for the components of the velocity and acceleration along the

radius vector, a meridian, and a parallel of latitude. Reduce

these expressions to the ordinary form in terms of x, y, z.

5. Show the direct method suggested in Art. 63 that the

operator V is independent of the axes.

6. By the second method given for computing V find

the derivative V of a triple product [a b c] each term of which

is a function of a;, ^, s in case

a = (r • r) r, b = (r - a) e, c = r X ^

where d, e, f are constant vectors,

7. Compute V- V Fwhen F'is r% r, -, or — •

r r^

8. Compute V W, VV . V, and V x V x V when V is

equal to r and when V is equal to -^ and show that in these

cases the formula (68) holds.

9. Expand V x VFand V . V x V in terms of i, j, k and

show that they vanish (Art. 77).

10. Show by expanding in terms of i, j, k that

Vx VxV=VV.V-V. VV.

11. Prove A.V(V-"W) = VA. VW + WA = VV,
and

(VxV) X W=Vx (Vx W)w + WV.V-V(V.W)w.



CHAPTER rV

THE INTEGEAL CALCTJLTTS OF VECTORS

79.] Let W (x, y, z) be a vector function of position in

space. Let G be any curve in space, and r the radius vector

drawn from some fixed origin to the points of the curve.

Divide the curve into infinitesimal elements di. F»em the

sum of the scalar product of these elements d r and the value

of the function W at some point of the element—
thus 2 W • cZ r.

The limit of this sum when the elements di become infinite

in number, each approaching zero, is called the line integral of

W along the curve C and is written

/W. dT.

If W^W^i + W^i+Wslt,

and di = i dx + J dy + Ts. dz,

fW'dT= f lWidx + W^dy + Wads']. (1)

The definition of the line integral therefore coincides with

the definition usually given. It is however necessary to

specify in which direction the radius vector r is supposed to

describe the curve during the integration. For the elements

dx have opposite signs when the curve is described in oppo-
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site directions. If one method of description be denoted by

C and the other by — C,

XW-dr = - /W- d\
-0 J a

In case the curve (7 is a closed curve bounding a portion of

surface the curve will always be regarded as described in

such a direction that the enclosed area appears positive

(Art. 25).

If f denote the force which may be supposed to vary from

point to point along the curve C, the work done by the force

when its point of application is moved from the initial point

to of the curve (7 to its final point r is the line integral

ff'di= f'f' dr.
Jo J To

Theorem : The line integral of the derivative VV of a

scalar function V(x, y, z) along any curve from the point

r,, to the point r is equal to the difference between the values

of the function V(x, y, z) at the point r and at the point fo-

That is,

IT

JvV.dT = V(i)-V(to) = V <ix, y,z)-Y (,x„ y^ ».)•

o

By definition dr.W=dV

fdV=r(x) - V(To) = V(x, y, z-) - V(x„ y,, z^). (2)

o

Theorem : The -line integral of the derivative VF of a

single valued scalar function of position V taken around a

closed curve vanishes.

The fact that the integral is taken around a closed curve

is denoted by writing a circle at the foot of the integral sign.

To show n

JvV'dr = 0. (3)
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The initial point To and the iinal point r coincide. Hence

F(r) = F(r„).

Hence by, (2) ,
TV F. d r = 0.
Jo

V

Theorem : Conversely if the line integral of W about every

closed curve vanishes, W is the derivative of some scalar

function V (x, y, z) of position in space.

Given fW'dT = 0.

«/

o

To show W = VV.

Let To be any fixed point in space and r a variable point.

The line integral

/7 dr

is independent of the path of integration C. ) For let any two

paths C and C be drawn between r,, and r. The curve which

consists of the path C from lo to r and the path — C from r

to To is a closed curve. Hence .by hypothesis

fW'dT+ fw-dt = 0,
Jo J —C

fW'dT = — fW',dr.
J —o' J o'

Hence fw-di= fW • dr.
Jo J c'

Hence the value of the integral is independent of the path

of integration and depends only upon the final point r.
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The value of the integral is therefore a scalar function of

the position of the point r whose coordinates are a;, y, z.

rW'di = V {x,y,z).

Let the integral be taken between two points infinitely near

together.

W • d r = c? V(x^ y, z).

But by definition VV-dT = dV.

Hence W = VF:

The theorem is therefore demonstrated.

80.] Let f be the force which acts upon a unit mass near

the surface of the earth under the influence of gravity. [Xet

a system of axes i, j, k be chosen so that k is vertical. Then

f = -^k.

The work done by the force when its point of application

moves from the position x^ to the position r is

w= I t-dx= I —\)s.'dx = — I gdz.

o o 3 o

Hence ^ = - g (z - z^) = g (z^- 2).

The force f is said to be derivable from a force-funcUon V
when there exists a scalar function of position V such that

the force is equal at each point of the derivative VF.
Evidently if V is one force-function, another may be obtained

by adding to V any arbitrary constant. In the above ex-

ample the force-function is

r=w = g(z„-z').

Or more simply V=— gz.

The force is f = VF= — ^k.
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The necessary and sufficient condition that a force-function

V (x, y, z) exist, is that the work done by the force when its

point of application moves around a closed circuit be zero.

The work done by the force is

w = I t • dv.=/
If this integral vanishes when taken around every closed

contour
f = VF=Vw.

And conversely if { =W
the integral vanishes. The force-function and the work done

differ only by a constant.

V= w + const.

In case there is friction no force-function can exist. For the

work done by friction when a particle is moved around in a

closed circuit is never zero.

The force of attraction exerted by a fixed mass M upon

a unit mass is directed toward the fixed mass and is propor-

tional to the inverse square of the distance between the

masses.
M

t = -C—,T.

This is the law of universal gravitation as stated by Newton.

It is easy to see that this force is derivable from a force-

function V. Choose the origin of cob'rdinates at the center

of the attracting mass M. Then the work done is

Jx
w = — ^

c -^ I'dr.

But I'di = r dr,

^' dr
w

a
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By a proper choice of units the constant c may be made

equal to unity. The force-function V may therefore be

chosen as

r

If there had been several attracting bodies M^, M^ M^, •

the force-function would have been

V=- \
-^ + -? +— +••

where r^^^, r-g, • • • are the distances of the attracted unit

mass from the attracting masses M^, M^, M^ • • •

The law of the conservation of mechanical energy requires

that the work done by the forces when a point is moved

around a closed curve shall be zero. This is on the assump-

tion that none of the mechanical energy has been converted

into other forms of energy during the motion. The law of

conservation of energy therefore requires the forces to be

derivable from a force-function. Conversely if a force-

function exists the work done by the forces when a point is

carried around a closed curve is zero and consequently there

is no loss of energy. A mechanical system for which a force-

function exists is called a conservative system. From the

example just cited above it is clear that bodies moving under

the law of universal gravitation form a conservative system—
at least so long as they do not collide.

81.] Let W (», y, s) be any vector function of position in

space. Let S be any surface. Divide this surface into in-

finitesimal elements. These elements may be regarded as

plane and may be represented by infinitesimal vectors of

which the direction is at each point the direction of the

normal to the surface at that point and of which the magni-

tude is equal to the magnitude of the area of the infinitesimal
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element. Let this infinitesimal vector which represents the

element of surface in magnitude and direction be denoted by

d a. Form the sum
SW-da,

which is the sum of the scalar products of the value of W
at each element of surface and the (vector) element of

surface. The limit of this sum when the elements of sur-

face approach zero is called the surface integral of W over

the surface S, and is written

ILW.da. (4)

The value of the integral is scalar. If W and da be ex-

pressed in terms of their three components parallel to i, j, k

W = JTi i + TFj j -I- ^3 k,

d a = (d a • i) i -t- (d a • j) j + (d a • k) k,

or da = dy da i -I- dada; j + dicdy k,

fCW • d a= fC [ W^ dy dz + W^ dz dx + W^ dx dy\. (5)

The surface integral therefore has been defined as is cus-

tomary in ordinary analysis. It is however necessary to

determine with the greatest care which normal to the surface

da is. That is, which side of the surface (so to speak) the

integral is taken over. For the normals upon the two sides

are the negatives of each other. Hence the surface integrals

taken over the two sides will differ in sign. In case the

surface be looked upon as bounding a portion of space d a

is always considered to be the exterior normal.

If f denote the flux of any substance the surface integral

/x f • da
a
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gives the amount of that substance which is passing through

the surface per unit time. It was seen before (Art. 71) thaF

the rate at which matter was leaving a point per unit

volume per unit time was V - f. The total amount of mat-

ter which leaves a closed space bounded by a surface S per

unit time is the ordinary triple integral

///- idv. (6)

Hence the very important relation connecting a surface in-

tegral of a flux taken over a closed surface and the volume

integral of the divergence of the flux taken over the space

enclosed by the surface—

Written out in the notation of the ordinary calculus this

becomes

I I \_Xdydz + Ydzdx + Zdxdy\

where JT, Y, Z are the three components of the flux f. The

theorem is perhaps stiU more familiar when each of the three

components is treated separately.

rr Xdxdy= CCC^dxdy dz. (8)'

This is known as Gauss's Theorem. It states that the surface

integral (taken over a closed surface) of the product of a

function X and the cosine of the angle which the exterior

normal to that surface makes with the X-axis is equal to

the volume integral of the partial derivative of that function
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with respect to x taken throughout the volume enclosed by
that surface.

If the surface 8 be the surface bounding an infinitesimal

sphere or cube

ji t'da. = '7 'tdv

where dv ^ the volume of that sphere or cube. Hence

V.f = — ff{.d&. (9)dv J J s

This equation may be taken as a definition of the divergence

V • f. The divergence of a vector function f is equal to the

limit approached by the surface integral of f taken over a sur-

face bounding an infinitesimal body divided by that volume

when the volume approaches zero as its limit. That is

From this definition which is evidently independent of the

axes all the properties of the divergence may be deduced. In

order to make use of this definition it is necessary to develop

at least the elements of the integral calculus of vectors before

the differentiating operators can be treated. This definition

of V • f consequently is interesting more from a theoretical

than from a practical standpoint. ^
82.] Theorem : The surface integral of the curl of a vector

function is equal to the line integral of that vector function

taken around the closed curve bounding that surface.

ffvxW.d&= fw-dT. (11)

This is the celebrated theorem of Stokes. On account of its

great importance in all branches of mathematical physics a

number of different proofs will be given.
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First Proof : Consider a small triangle 133 upon the surface

S (Fig. S2). Let the value of W at the vertex 1 be Wj.

Then by (50), Chap. IIJ., the value at any neighboring point is

W = ijW„ + V(W.Sr) + (Vx W)x Sr
},

where the symbol S r has been introduced for the sake of dis-

tinguishing it from d r which is to be used as the element of

integration. The integral of W taken around the triangle

IBS is

Fig. 32.

fW'dT=lfw„'dT+lfv(W'ST^.dt

+ ~ C (V xW) X Si.di.

Thefirstterm i rw<,.dr = iw„. fdr

vanishes because the integral of d r around a closed figure, in

this case a small triangle, is zero. The second term

lfw(W'STy'dT

vanishes by virtue of (3) page 180. Hence
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lfW'dr = lJvxWx St'dT.

Interchange the dot and the cross in this triple product.

l'W'di=l Cv xW-St X di.

When dris equal to the side 12 oi the triangle, S r is also

equal to this side. Hence the product

St X dr

vanishes because S r and d r are collinear. In like manner

when di is the side 31, Sr is the same side^^, but taken

in the opposite direction. Hence the vector product vanishes.

When dr is the side 23, Sr is a line drawn from the vertex

1 at whichW=Wo to this side 23. Hence the product Sixdi
is twice the area of the triangle. This area, moreover, is the

positive area 123. Hence

^St X dT = da,

where d a denotes the positive area of the triangular element

of surface. For the infinitesimal triangle therefore the

relation p
I W-dr = 'V X W • da,
J A

holds.

Let the surface S be divided into elementary triangles.

For convenience let the curve which bounds the surface

be made up of the sides of these triangles. Perform the

integration

fW'di

around each of these triangles and add the results together.

2 fW'dT = y,V xW'da.
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The second member '^V xW-da
s

is the surface integral of the curl of W.

^ V xW.da= rfv xW-da.

In adding together the line integrals which occur in the first

member it is necessary to notice that all the sides of the ele-

mentary triangles except those which lie along the bounding

curve of the surface are traced twice in opposite directions.

Hence all the terms in the sum

?/.
W'dr

which arise from those sides of the triangles lying within the

surface S cancel out, leaving in the sum only the terms

which arise from those sides which make up the bounding

curve of the surface. Hence the sum reduces to the line in-

tegral of W along the curve which bounds the surface S.

y^ fW'dT = fW'dT.
s'J A Jo

Hence i iv xW'da.= fw • d r. (11)

Second Proof : Let C be any closed

contour drawn upon the surface 8
(Fig. 83). It will be assumed that G

is continuous and does not cut itself.

Let C" be another such contour near

to C. Consider the variation S which

takes place in the line integral of W
in passing from the contour to the

contour C.
Fig. 33.
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S fW'di= fW'di- fw-dx,
J J c Jo

BCW'dT= rS(W.dr)= fW 'Sdt +Jsw 'dr.

But d(yr'ST') = dW-ST + W'dST

and Sdi = d8i.

Hence CW'SdT= Cw •dSr=fd(W-ST^ - CdW'St.

The expression d (W • S r) is by its form a perfect differential.

The value of the integral of that expression will therefore be

the difference between the values of W • c? r at the end and at

the beginning of the path of integration. In this case the

integral is taken around the closed contour 0. Hence

Cd(W'ST-) = 0.

Hence fW'SdT= -JdW'Sr,

and S C'W-dT=C8W 'dr-CdW-St,

SrW'dT = f\sw-dr-dW'8i\.

9W , 3W , 5W
,

But dW = -^^ dx+ -^;— dy + -^r-de,
d X ay dz

5W , SW . , SW^ ,

or dW = -fr—i'dr+ -f;—i'dT + -^r-ls.'dT,
8 X ay a z

and gW = ?^i.Sr+^j.Sr+^k.8r.
d X ay a z
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Substituting these values

J J ( 3

X

ax

+ similar terms in y and z. i •

But by (25) page 111

/. o'W\ ,^ , , SW , . ^ 9W ^ .

( 1 X -T— )
• (5 r X d r) = -tt— . d r i • 3 r — -^— • S r i • d r.

\ & X J d X d X

Hence s/w»rfr = / 1 i x ^^

—

'hixdr

+ similar terms in y and s [
.

or S rw . c? r = fv x W • S r X <i r.

In Fig, 33 it will be seen that d r is the element of arc

along the curve G and S r is the distance from the curve C to

the curve C". Hence S r x c? r is equal to the area of an ele-

mentary parallelogram included between C and C" upon the

surface S. That is

Srx<ir = £?a,

S ('•W'di = fv xW'da..

Let the curve C starting at a point in S expand until it

coincides with the contour bounding 8. The line integral

/ W'dr

will vary from the value o at the point to the value

J W'di
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taken around the contour which bounds the surface S. This

total variation of the integral will be equal to the sum of the

variations S

2s/w.dr = 2j'vxW.da.

Or fw-di=f('vxW-d&. (11)

83.] Stokes's theorem that the surface integral of the curi

of a vector function is equal to the line integral of the func-

tion taken along the closed curve which bounds the surface

has been proved. The converse is also true. If the surface

integral of a vector function IT is equal to the line integral of the

function W taken around the curve bounding the surface and if

this relation holds for all surfaces in space, then TJ is the curl of

W. That is

if rrir.rfa = fw.dr, thenXr=Vx W. (12)

Form the surface integral of the difference between IT and

V X W.

Cf(V-VxW^'d& = fW'dT- fW'dT = 0,

or r r (XT- V x"W)-<Za = 0.

Let the surface S over which the integration is performed be

infinitesimal. The integral reduces to merely a single term

(TJ-Vx W).£?a = 0.

As this equation holds for any element of surface d a, the

first factor vanishes. Hence

IT - V X W = 0.

Hence TJ = V x W.

The converse is therefore demonstrated.
18
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A definition of V xW which is independent of the axes

1, j, k may be obtained by applying Stokes's theorem to an in-

finitesimal plane area. Consider a point P. Pass a plane

through P and draw in it, concentric with P, a small circle of

area d a.

Vx W.da=r W«dr. (13)

When d a has the same direction as V X W the value of the

line integral will be a maximum, for the cosine of the angle

between V X W and d a will be equal to unity. For this

value of d&,

VxW =,^™^r-^ Tw.^rl. (13)'

Hence the curl V xW of a vector function W has at each

point of space the direction of the normal to that plane in

which the line integral of W taken about a small circle con-

centric with the point in question is a maximum. The mag-

nitude of the curl at the point is equal to the magnitude of

that line integral of maximum value divided by the area of

the circle about which it is taken. This definition like the

one given in Art. 81 for the divergence is interesting more

from theoretical than from practical considerations,

^•'"'otokes's theorem or rather its converse may be used to de-

duce Maxwell's equations of the electro-magnetic field in a

simple manner. Let E be the electric force, B the magnetic

induction, H the magnetic force, and C the flux of electricity

per unit area per unit time (J,, e. the current density).

It is a fact learned from experiment that the total electro-

motive force around a closed circuit is equal to the negative

of the rate of change of total magnetic induction through

the circuit. The total electromotive force is the line integral

of the electric force taken around the circuit. That is

XExfr.
o
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The total magnetic induction through the circuit is the sur-

face integral of the magnetic induction B taken over a surface

bounded by the circuit. That is

n. B>(2a.
a

Experiment therefore shows that

d

or f'E-di= f j —i-da.
Jo J J a

Hence by the converse of Stokes's theorem

V X E = - B, curl E = - B.

It is also a fact of experiment that the work done in carry-

ing a unit positive magnetic pole around a closed circuit is

equal to 47r times the total electric flux through the circuit.

The work done in carrying a unit pole around a circuit is

the line integral of H around the circuit. That is

X "E'dr.
o

The total flux of electricity through the circuit is the

surface integral of C taken over a surface bounded by the

circuit. That is ^ r.

Experiment therefore teaches that

JH.rfr = 47r ffc-dtu
o J J a
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By the converse of Stokes's theorem

V X H = 4 TT C.

With a proper interpretation of the current C, as the dis-

placement current in addition to the conduction current,

an interpretation depending upon one of Maxwell's primary

hypotheses, this relation and the preceding one are the funda-

mental equations of Maxwell's theory, in the form used by

Heaviside and Hertz.

The theorems of Stokes and Gauss may be used to demon-

strate the identities.

V . V X W = 0, div curl W = 0.

VxVF=0, curlVF=0.

According to Gauss's theorem

JJfV'VxWdv= ffvxW'dii.

According to Stokes's theorem

ffv x-W-da.=: CW'dx.

Hence CCCv-V xWdv= Cw-dr.

Apply this to an infinitesimal sphere. The surface bounding

the sphere is closed. Hence its bounding curve reduces to a

point ; and the integral around it, to zero.

V'VxWdv= fW'dx = 0,
Jo

V • V X W = 0.
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Again according to Stokes's theorem

J J a J o

Apply this to any infinitesimal portion of surface. The curve

bounding this surface is closed. Hence the line integral of

the derivative VF^vanishes.

V X VV'da = 0.

As this equation holds for any da, it foUows that

Vx VF=0.

In a similar manner the converse theorems may be

demonstrated. If the divergence V • TJ of a vector function

TJ is everywhere zero, then TJ is the curl of some vector

function W.
XT = V X W.

If the curl V X TI of a vector function TJ is everywhere zero,

then TJ is the derivative of some scalar function V,

TJ = VF.

84.] By making use of the three fundamental relations

between the line, surface, and volume integrals, and the

dels, viz.

:

f VV.dT = V(t)-V(ro), (2)

ffvxW'dA= Cw-di, (11)

fffv.W,l. =ffw.i^ (7)

it is possible to obtain a large number of formulsB for the

transformation of integrals. These formulae correspond to
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those connected with " integration by parts " in ordinary

calculus. They are obtained by integrating both sides of the

formulae, page 161, for differentiating.

First V (uv") =u'V V + vV u.

I
V (u v) • di = j uV V' diJtrj vVu'dv.

Hence I uV v » dx =: [uv'] — jvVu'dr. (14)

r

The expression [u v]

represents the difference between the value of (u v) at r, the

end of the path, and the V3.1ue at to, the beginning of the path.

If the path be closed

/uV V'dt — —
I
vV u- di. (14)'

o Jo

Second Vx (mv) = mVxv + Vmxv.

f f V >< (uv)-d& = f j uS7 xv'dtt.+ f f Vuxv'da.
J J a J J a J J a

Hence

I I
V'uxvda,= C uvdr— f f uV XV'da, (15)

J J a Jo J J a

or

f f uV xv-da= f uY'dr— f f Vuxv'da,, (15)'

J J a Jo J J a

Third Vx (uVb}^uVxVv + \7ux'\7v.

But VxVi; =

Hence V X (« V v) = V m x V »,
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Hence

f Cv uxV V'da.= C uVv'dT = — r vVu'dT, (16)
J J a I/O Jo

Fourth V • (m v) = M V • V + V M • V.

rrr\7-(uv)dv=rrrus7-vdv+ c c ^^ wvdv.

Hence

f r i uX^ 'vdv =
I I

uvda,—
I

I j "^U'vdv, (17)

or

f f i '^U'V dv=
j f

uvda— I j I W^'W dv, (17)'

Fifth v(Vmxv) = VXV«*v — V«**Vxv.

V(V^xv)= — Vii'Vxv,

CCC'^'Q7uxv)dv = — C C C "^ U'S7 XV dv.

Hence C C Vu 'X "v • da = —
j j

j'V u-V x 'v dv. (18)

In all these formulae which contain a triple integral the

surface S is the closed surface bounding the body throughout

which the integration is performed.

Examples of integration by parts like those above can be

multiplied almost without limit. Only one more will be

given here. It is known as Green's Theorem and is perhaps

the most important of aU. If u and v are any two scalar

functions of position,
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=
1 I

jV'(vVu)dv— I I IvV'Vudv.

Hence

/ /
/Vm'V«'c?v = / I uVv'da.—

I j l uS7''^vdv,

= 1' fvS7U'da.-r C fvV-Vudv. (19)

By subtracting these equalities the formula (20)

/ / / (y'V'V>'— 'oS7''^u)dv= I j {u'^v— VVu)'d2L.

is obtained. By expanding the expression in terms of i, j, k

the ordinary form of Green's theorem may be obtained. A
further generalization due to Thomson (Lord Kelvin) is the

following

:

/ / I
wV>i'V'>'dv=

I j uwVv'da— I j j u'^'[wVv']dv,

=
I j vw'VU'da — I I j vy'[wVu]dv, (21)

where w is a third scalar function of position.

The element of volume dv has nothing to do with the scalar

function v in these equations or in those that go before. The

use of V in these two different senses can hardly give rise to

any misunderstanding.

.y"^* 85.] In the preceding articles the scalar and vector func-

tions which have been subject to treatment have been sup-
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posed to be continuous, single-valued, possessing derivatives

of the first two orders at every point of space under consider-

ation. When the functions are discontinuous or multiple-

valued, or fail to possess derivatives of the first two orders

in certain regions of space, some caution must be exercised in

applying the results obtained.

Suppose for instance

F=tan"^?^'

^'^— -2 I
,,2^+ ^2 ,

„2J-
1.

The line integral

' xdy — y dx
fvv.dr^f:

x^ 4- y

Introducing polar coordinates

X = r cos 6,

y = r sin 0,

xdy — ydx = rd0.

fv-dv=f^-^=lfd0.

Form the line integral from the point ( + 1,0) to the point

(—1, 0) along two different paths. Let one path be a semi-

circle lying above the X-axis ; and the other, a semicircle

lying below that axis. The value of the integral along the

first path is

1 r'
-

I de=7r;

1 r~"
along the second path, - I dd^ir.

From this it appears that the integral does not depend merely

upon the limits of integration, but upon the path chosen.
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the value along one path being the negative of the value

along the other. The integral around the circle which is a

closed curve does not vanish, but is equal to ± 2 tt.

It might seem therefore the results of Art. 79 were false

and that consequently the entire bottom of the work which

foUows fell out. This however is not so. The difficulty is

that the function
-1 yF=tan -

X

is not single-valued. At the point (1,1), for instance, the

function V takes on not only the value

F= tan 1 = ^*

but a whole series of values

where h is any positive or negative integer. Furthermore at

the origin, which was included between the two semicircular

paths of integration, the function V becomes wholly inde-

terminate and fails to possess a derivative. It will be seen

therefore that the origin is a peculiar or singular point of the

function V. If the two paths of integration from (+ 1, 0) to

(—1,0) had not included the origin the values of the integral

would not have differed. In other words the value of the

integral around a closed curve which does not include the

origin vanishes as it should

Inasmuch as the origin appears to be the point which

vitiates the results obtained, let it be considered as marked

by an impassable barrier. Any closed curve G which does

not contain the origin maybe shrunk up or expanded at will;

but a closed curve which surrounds the origin cannot be

so distorted as no longer to enclose that point without break-

ing its continuity. The curve C not surrounding the origin
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may shrink up to nothing without a break in its continuity

;

but C can only shrink down and fit closer and closer' about

the origin. It cannot be shrunk down to nothing. It must

always remain encircling the origin. The curve C is said to

be reducible ; C, irreducible. In case of the function F", then,

it is true that the integral taken around any reducible circuit

G vanishes ; but the integral around any irreducible circuit G
does not vanish.

Suppose next that V is any function whatsoever. Let all

the points at which V fails to be continuous or to have con-

tinuous first partial derivatives be marked as impassable

barriers. Then any cii'cuit G which contains within it no

such point may be shrunk up to nothing and is said to be

reducible; but a circuit which contains one or more such

points cannot be so shrunk up without breaking its continuity

and it is said to be irreducible. TTie theorem may then be

stated: The line integral of the derivative WV of any function

V vanishes arotmd any reducible circuit G. It may or may not

vanish around an irreducible ciircuit In ease one irreducible

circuit C may be distorted so as to coincide with another

irreducible circuit G without passing through any of the

singular points of V and without breaking its continuity,

the two circuits are said to be reconcilable and the values of

the line integral of V F" about them are the same.

A region such that any closed curve G within it may be

shrunk up to nothing without passing through any singular

point of V and without breaking its continuity, that is, a

region every closed curve in which is reducible, is said to be

acyclic. All other regions are cyclic.

By means of a simple device any cyclic region may be ren-

dered acyclic. Consider, for instance, the region (Fig. 34) en-

closed between the surface of a cylinder and the surface of a

cube which contains the cylinder and whose bases coincide

with those of the cylinder. Such a region is realized in a room
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cny.,

Fig. 34.

in which a column reaches from the floor to the ceiling. It

is evident that this region is cyclic. A circuit which passes

around the column is irreducible. It cannot be contracted to

nothing without breaking its continuity. If

(^-^ / now a diaphragm be inserted reaching from
''"^^'^ the surface of the cylinder or column to the

surface of the cube the region thus formed

bounded by the surface of the cylinder, the

surface of the cube, and the two sides of the

diaphragm is acyclic. Owing to the inser-

tion of the diaphragm it is no longer possible

to draw a circuit which shall pass completely around the cyl-

inder— the diaphragm prevents it. Hence every closed cir-

cuit which may be drawn in the region is reducible and the

region is acyclic.

In like manner any region may be rendered acyclic by

inserting a sufficient number of diaphragms. The bounding

surfaces of the new region consist of the bounding surfaces of

the given cyclic region and the two faces of each diaphragm.

In acyclic regions or regions rendered acyclic by the fore-

going device all the results contained in Arts. 79 et seq.

hold true. For cyclic regions they may or may not hold

true. To enter further into these questions at this point is

unnecessary. Indeed, even as much discussion as has been

given them already may be superfluous. For they are ques-

tions which do not concern vector methods any more than the

corresponding Cartesian ones. They belong properly to the

subject of integration itself, rather than to the particular

notation which may be employed in connection with it and

which is the primary object of exposition here. In this

respect these questions are similar to questions of rigor.
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The Integrating Operators. The Potential

86.] Hitherto there have been considered line, surface,

and volume integrals of functions both scalar and vector.

There exist, however, certain special volume integrals which,

owing to their intimate connection with the differentiating

operators V, V •, Vx, and owing to their especially frequent

occurrence and great importance in physics, merit especial

consideration. Suppose that

is a scalar function of the position in space of the point

C*2» 2^2' ^2)*

For the sake of definiteness V may be regarded as the

density of matter at the point (ajg, y^, z^). In a homogeneous

body V is constant. In those portions of space in which no

matter exists V is identically zero. In non-homogeneous dis-

tributions of matter V varies from point to point; but at

each point it has a definite value.

The vector . , . , .

Ta = iBa 1 + ^2 J + «2 ^»

drawn from any assumed origin, may be used to designate

the point (x^, y^, Zj). Let

be any other fixed point of space, represented by the vector

Pj = ajj i -f- yj j + sj k

drawn from the same origin. Then

'«-'! = (*a - «x) i + (.Vi - Vi) 3 + (22 - 2i) k

is the vector drawn from the point (ajj, y^, Zj) to the point

(asj, yj, z^"). As this vector occurs a large number of times

in the sections immediately following, it will be denoted by

'12 = 'a ""
'i-
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The length of r^g is then r^j and will be assumed to

positive.

Consider the triple integral

I (^1, Vv «i) =///^^^^^7f^
^^=> ^^^i* '^^i^-

The integration is performed with respect to the variables

"'a' ^2' '^a
— *^^* i^» ^i*^ respect to the body of which V

represents the density (Fig. 35). During

the integration the point {x-^, y^, z-^ re-

mains fixed. The integral / has a definite

value at each definite point {x-^, y^, z^).

It is a function of that point. The in-

terpretation of this integral / is easy, if

the function V be regarded as the density of matter in space.

The element of mass c^m at (x^, y^, z^)^

dm = V (x^, y^, Zj) <^«2 ^Vi ^^i = ^^'°-

The integral I is therefore the sum of the elements of mass

in a body, each divided by its distance from a fixed point

(air Vv ^\)'

r dm

This is what is termed the potential at the point (aj, y^, «i)

due to the body whose density is

The limits of integration in the integral / may be looked at

in either of two ways. In the first place they may be

regarded as coincident with the limits of the body of which

V is the density. This indeed might seem the most natural

set of limits. On the other hand the integral I tq&y ^
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regarded as taken over all space. The value of the integral

is the same in both cases. For when the limits are infinite

the function F vanishes identically at every point (x^, y^, z^
situated outside of the body and hence does not augment

the value of the integral at all. It is found most convenient

to consider the limits as infinite and the integral as extended

over all space. This saves the trouble of writing in special

limits for each particular case. The function Fof itself then

practically determines the limits owing to its vanishing iden-

tically at all points unoccupied by matter.

87.] The operation of finding the potential is of such

frequent occurrence that a special symbol, Pot, is used for it.

J>otV=fff^^^^l;^^^dx,dy,dz,. (22)

The symbol is read "the potential of V." The potential,

Pot V, is a function not of the variables x^, y^, z^ with

regard to which the integration is performed but of the point

(x^, yi, a^) which is fixed during the integration. These

variables enter in the expression for r-y^. The function V
and Pot V therefore have different sets of variables.

It may be necessary to note that although V has hitherto

been regarded as the density of matter in space, such an

interpretation for V is entirely too restricted for convenience.

Whenever it becomes necessary to form the integral

of any scalar function V, no matter what V represents, that

integral is called the potential of V. The reason for calling-

such an integral the potential even in cases in which it has

no connection with physical potential is that it is formed

according to the same formal law as the true potential and
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by virtue of that formation has certain simple rules of opera-

tion which other types of integrals do not possess.

Pursuant to this idea the potential of a vector function

may be written down.

-W (a; 2, y^, «^
PotW=fff^y^^'^' d.,dy,d.,. (23)

In this case the integral is the sum of vector quantities

and is consequently itself a vector. Thus the potential of a

vector function W is a vector function, just as the potential

of a scalar function F'was seen to be a scalar function of posi-

tion in space. If W be resolved into its three components

"W (aja, y^ Zz')=iX (x^, y^, z^+iY (x^, y^, z^

+ 1^2 (ajg, y^, «2)

PotW = iPotX4-jPotr+kPot.^. (24)

The potential of a vector function W is equal to the vector

sum of the potentials of its three components X, Y, Z.

The potential of a scalar function V exists at a point

(a;j, yj, Sj,) when and only when the integral

J J J »-j2

Potr=/ / /^d«2.

taken over all space converges to a definite value. If,

for instance, V were everywhiere constant in space the in-

tegral would become greater and greater without limit as

the limits of integration were extended farther and farther

out into space. Evidently therefore if the potential is to exist

V must approach zero as its limit as the point {x^^ y^, Sj)

recedes indefinitely. A few important sufficient conditions

for the convergence of the potential may be obtained by

transforming to polar cob'rdinates. Let
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x = r ainB cos
<f),

y=r sin sin ^,

2 = r cos 6,

dv — r^sva.6 dr dO d<^.

Let the point (ajj, y^, z{) which is jQxed for the integration

be chosen at the origin. Then

and the integral becomes

j'Cj'^dv^= CCC-r^aind dr dO d<f), (22)

or simply PotF= I / / f^-sin^ dr dO d^.

If the function V decrease so rapidly that the prodv^ct

Vr^

remains finite as r increases indefinitely, then the integral con-

verges as far as the distant regions of space are concerned.

For let

Vr^<K

r = 0O r= GO

fffvrwa.edrddd<^ ^CC f ^ainO dr dd d^

r=R r=R
r = co

r = R

Hence the triple integral taken over all space outside of a

sphere of radius B (where B is supposed to be a large quan-

tity) is less than 4 irK /B, and consequently converges as far

as regions distant from the origin are concerned.
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If the function V remain finite or if it become infinite so

weakly that the product

remains finite when r approaches zero, then the integral converges

as far as regions near to the origin are concern^. For let

Vr<K
r = R

=

r = R

r = R

C f fvrsmedr d0 d^ < f f Cxdr d0 d<f>.

rzzO

r = R

f f flTdr dO d^ = 'iirKB.

r =

Hence the triple integral taken over all space inside a sphere

of radius iJ (where B is now supposed to be a small quantity)

is less than ^iir K B and consequently converges as far as

regions near to the origin which is the point (aj^, y-^, Zj) are

concerned.

If at any point (Xg, j^, Zj) not coincident with the origin,

i. e. the point (x^, yj, Zj), the function V becomes infinite so

weakly that the product of the value ofY at a point near to

(Xg, y2> Zg) % ^^^ square of the distance of that point from

(Xg, y2» Z2) I'^fi^O'i''''^ finite as that distance approaches zero, then

the integral converges asfar as regions near to the point (Xg, j^, Zg)

are concerned. The proof of this statement is like those given

before. These three conditions for the convergence of the

integral Pot V are sufficient. They are by no means neces-

sary. The integral may converge when they do not hold-

It is however indispensable to know whether or not an integral

under discussion converges. Unless the tests given above

show the convergence, more stringent ones must be resorted

to. Such, however, will not be discussed here. They belong

to the theory of integration in general rather than to the
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theory of the integrating operator Pot. The discussion of

the convergence of the potential of a vector function W re-

duces at once to that of its three components which are scalar

functions and may be treated as above. >

"

88.] The potential is a function of the variables x-^, y-^, z^

which are constant with respect to the integration. Let the

value of the potential at the point (x-^, y^, e^) be denoted by

[PotF]^,,„...

The first partial derivative of the potential with respect to asj

is therefore

9FotV _ LiM ([Potr].,H-Ax„y..»,-[PotF]^.,,^]
(25)

9 x^ Aa;i = 0^" Ax^

The value of this limit may be determined by a simple

device (Fig. 36). Consider

the potential at the point

(iCj +Axi, 2/1, 2i)

due to a certain body T. This

is the same as the potential at

the point ^^^^ c*wju,

due to the same body T displaced in the negative direction by

the amount A x^. For in finding the potential at a point P
due to a body T the absolute positions in space of the body

T and the point P are immaterial. It is only their positions

relative, to each other which determines the value of the poten-

tial. If both body and point be translated by the same

amount in the same direction the value of the potential is un-

changed. But now if T be displaced in the negative direction

by the amount A x, the value of V at each point of space is

changed from

F(»2' ^2' «2) to r (033 -I- A ^V VV «2)>

where Aa;„ = Aa;i.
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Hence

[Pot r(a;2,y2,2'2)]«i + a«„ y„ ^, = [Pot V(x^ + A x^,y^,z^)-\
^,y^,^

Hence ^m
\
[Pot n». + A«..y..».- [Pot ^]«.,y.,^ ?^

Aa;i = 0^ AiBj
^

LiM
^
[PotF(a!2+ Aa;2,y2,g2)]^,y„^-[Potr(a;2,ya>g2)]».,v.,^. ?

Aa3i = 0^ Aa;, j'

It will be found convenient to introduce the limits of

integration. Let the portion of space originally filled by the

body T be denoted by M ; and let the portion filled by the

body after its translation in the negative direction through

the distance A x^ be denoted by M' . The regions Jlf and M'

overlap. Let the region common to both be M; and let the

remainder of Mhe m; the remainder oi M', m'. Then

M=M+m, M' = M+m\

12

= rff yjo^i+^^yyvH)
^^ J

err V{.x^+^x^,yi,^)
dv.

Hence (25) becomes, when A x^ is replaced by its equal A Kg,

t As all the following potentials are for the point x^, y^, xy the bracket and

indices have been dropped.
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Aa;2=0( Aa!2 =

Or, Lm CCC F(a;a + Aai^ y^, g^) - Vjx^ , y^, z^

Lm fff n^yy^^H) ^^

Lm rrr ^(^2 + a x^, y^, g^) - VC^^, y^, g^) J

_ rrr Lm < ^("'a+^'^2>y2»g2)-^(a'2>y2.ga) ? j.. x

1 SrCajj, yj, gj)

=///.a rja 5 aia
dVyX

when A a?! approaches zero as its limit the regions mand m',

which are at no point thicker than A 05, approach zero ; M'
and M both approach J!f as a limit.

t There are cases in which this reversal of the order in which the two limits

are taken gives incorrect results. This is a question of double limits and leads to

the mazes of modem mathematical rigor.

X If the derivative of Fis to exist at the snrface hounding T the values of the

function V must diminish continnonslj to zero npon the surface. If Fchanged

suddenly from a finite value within the surface to a zero value outside the de-

rivative 3VI Q xi would not exist and the triple integral would be meaningless.

For the same reason V is supposed to be finite and continuous at every point

within the region T.
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Then if it be assumed that the region Tis finite and that V
vanishes upon the surface bounding T

LiM

Consequently the expression for the derivative of the poten-

tial reduces to merely

SPot
~9 straff f ±fr,., = p„.9r. (26)

The partial derivative of fhe potential of a scalar function V
is equal to the potential of the partial derivative of V.

The derivative V of the potential ofYis equal to the potential

of the derivative V V.

VPotF=PotVF: (27)

This statement follows immediately from the former. As

the V upon the left-hand side applies to the set of vari-

ables JCj, y-^, »j, it may be written Vj. In like manner the

V upon the right-hand side may be written Vg to caU atten-

tion to the fact that it applies to the variables x^, y^, z^ of V.

Then ViPotF=PotV2F: (27)'

To demonstrate this identity V may be expanded in terms of

i, j, k.

.SPotF .5PotF ^5PotF
i-T +J -0 + ^—n

(y asj d y^ d z-y

9V SV SV= i Pot— H- j Pot ;^ + k Pot 11-.
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As i, j, k aie constant vectors they may be placed under

the sign of integration and the terms may be collected. Then

by means of (26)

ViPotF=PotV2^

The curl V x and divergence V • of the potential of a vector

function W are equal respectively to the potential of the curl and

divergence of that function.

Vi X Pot W = Pot Va X W,

or curl Pot W= Pot curlW
and Vi . Pot W= Pot Va • W,

or div Pot W = Pot div W.

(28)

(29)

These relations may be proved in a manner analogous to the

above. It is even possible to go further and form the dels

of higher osder

V • V Pot V= Pot V . VF, (30)

V.VPotW = PotV.VW, (31)

VV ^ Pot W = Pot VV . W, (32)

VxVxPotW=PotVx VxW. (33)

The dels upon the left might have a subscript 1 attached to

show that the differentiations are performed with respect to

the variables x^, ^j, Sj, and for a similar reason the dels upon

the right might have been written with a subscript 2. The
results of this article may be summed up as follows:

Theorem: The differentiating operator V and the integrating

operator Pot are commutative.

*89.] In the foregoing wort it has been assumed that the

region T was finite and that the function V was everywhere

finite and continuous inside of the region T and moreover

decreased so as to approach zero continuously at the surface

bounding that region. These restrictions are inconvenient
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and may be removed by making use of a surface integral.

The derivative of the potential was obtained (page 213) in

essentially the form

sPotr err i 3V
9—-fff -V-^H

a! J u J J ji ^12 ' ""a

+ A«>,^O^J J J„,
dv,

Lm ^ r r r F(a;a. y^ h) J
-^-.^ox^JJJ^

—-— dv.

Let f2 a be a directed element of the surface S bounding the

region M. The element of volume dv^ in the region m' is

therefore equal to

dv^ = iix^i . da.

Hence ^fff ^^^^ + ^ ^2> ^a^^a) ^

J J ri2

The element of volume d v^ in the region m is equal to

dv^ = — A x^i • da.

Hence - -L T f /* Z^lL^lf?) d..
Cj t/ »/ t/ m 7^12

^('^a' ya' 2a)
i 'C^a.

'•la

Consequently

3 PotF r r r "^ sv , r r v
iBi J J J uTy^dx^ * J J a ri2
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The volume integral is taken throughout the region jifwitii

the understanding that the value of the derivative of V at

the surface S shall be equal to the limit of the value of that

derivative when the surface is approached from the interior

of M. This convention avoids the difl5culty that arises in

connection with the existence of the derivative at the surface

S where V becomes discontinuous. The surface integral is

taken over the surface S which bounds the region.

Suppose that the region M becomes infinite. By virtue of

the conditions imposed upon V to insure the convergence of

the potential
TrS < K.

Let the bounding surface 5 be a sphere of radius B, a quan-

tity which is large.

i«c?a<r2 dd d<f>.

The surface integral becomes smaller and smaller and ap-

proaches zero as its limits when the region M becomes infinite.

Moreover the volume integral

J J J M ri»

1 9V ,

12 5*2

remains finite asM becomes infinite. Consequently provided

V is such a function that Pot V exists as far as the infinite

regions of space are concerned, then the equation

5Potr „ , 9V= Pot •

9xi 9x,2

holds as far as those regions of space are concerned.

Suppose that V ceases to be continuous or becomes infinite

at a single point (afj, y^ e{) within the region T. Surround
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this point with a small sphere of radius B. Let S denote the

surface of this sphere and M all the region T not included

within the sphere. Then

gPotF
3 Xf''ffLk/^'"'^-fJ''-^J-'"-

By the conditions imposed upon V

Vr<K

r C— i'da, < C C K dd d^ = 2irK.

Consequently when the sphere of radius B becomes smaller

and smaller the surface integral may or may not become zero.

Moreover the volume integral

ISL
1 sv

dv^

may or may not approach a limit when i? becomes smaller

and smaller. Hence the equation

5PotF „ 5V—
^ = Pot -z

has not always a definite meaning at a point of the region

T at which V becomes infinite in such a manner that the

product Vr remains finite.

If, however, V remains finite at the point in question so

that the product Vr approaches zero, the constant K is zero

and the surface integral becomes smaller and smaller as iJ

approaches zero. Moreover the volume integral

///,
-1 £r
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approaches a definite limit as S becomes infinitesimal. Con-

sequently the equation

5PotF _ Pot5F

holds in the neighborhood of all isolated points at which V
remains finite even though it be discontinuous.

Suppose that V becomes infinite at some single point

(^3» 2^2' ^i) °°* coincident with (x^, y^, z-^). According to the

conditions laid upon V
VP < K,

where I is the distance of the point (x^, y^t z^ from a point

near to it. Then the surface integral

IS.

need not become zero and consequently the equation

5PotF „ SV
=Pot

need not hold for any point (a;^, ^j, z^ of the region. But

if V becomes infinite at x^, y^, z^ in such a manner that

ri<K,

then the surface integral will approach zero as its limit and

the equation will hold.

Finally suppose the function V remains finite upon the

surface S bounding the region T, but does not vanish there.

In this case there exists a surface of discontinuities of V.

Within this surface V is finite ; without, it is zero. The

surface integral

V
fl i'da

S 7-12
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does not vanish in general. Hence the equation

PPotr ^ ^3V—
ji = Pot TT

cannot hold.

Similar reasoning may be applied to each of the three

partial derivatives with respect to ajj, y^, z^. By combining

the results it is seen that in general

ViPotV=FotV^V+ r f ~ da. (35)

Let V be any function in space, and let it be granted that

Pot V exists. Surround each point of space at which V
ceases to be finite by a small sphere. Let the surface of the

sphere be denoted by S. Draw in space all those surfaces

which are surfaces of discontinuity of V. Let these sur-

faces also be denoted by S. Then the formula (35) holds

where the surface integral is taken over all the surfaces

which have been designated by S. If the integral taken

over aU these surfaces vanishes when the radii of the spheres

above mentioned become infinitesimal, then

ViPotr=Pot VgF: (27)'

This formula

ViPotF=PotV2F.

will surely hold at a point (xj, y^, Zj) if V remairhs

finite or becomes infinite at a point (Xj, yj, Zj) so that the

product V 1 remains finite, and if V possesses no surfaces of

discontinuity, and iffurthermore the product V r* remains finUe

as r becomes infinite^ In other cases special tests must be

applied to ascertain whether the formula (27) ' can be used

or the more complicated one (35) must be resorted to.

• > For extensions and modifications of this theoiem, see exeicises.
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The relation (27) is so simple and so amenable to trans-

formation that V will La general be assumed to be such a

function that (27) holds. In cases in which V possesses a

surface S of discontinuity it is frequentiy found convenient

to consider V as replaced by another function V which has

in general the same values as Fbut which instead of possess-

ing a discontinuity at 8 merely changes very rapidly from

one value to another as the point (x^, y^, z^ passes from one

side of /S to the other. Such a device renders the potential

of V simpler to treat analytically and probably conforms to

actual physical states more closely than the more exact

conception of a surface of discontinuity. This device prac-

tically amounts to including the surface integral in the

symbol Pot VF:
In fact from the standpoint' of pure mathematics it is

better to state that where there exist surfaces at which the

function V becomes discontinuous, the full value of Pot VV
should always be understood as including the surface integral

da.

iir^j-

a • 12

in addition to the volume integral

'•12

In like manner Pot V-W, PotV X W, Mw V • W and other

similar expressions to be met in the future must be regarded

as consisting not only of a volume integral but of a surface

integral in addition, whenever the vector functionW possesses

a surface of discontinuities.

It is precisely this convention in the interpretation of

formulae which permits such simple formulge as (27) to hold

in general, and which gives to the treatment of the integrat-

ing operators an elegance of treatment otherwise unobtainable.
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The irregularities which may arise are thrown into the inter-

pretation, not into the analytic appearance of the formulEe.

This is the essence of Professor Gibbs's method of treatment.

90.] The first partial derivatives of the potential may also

be obtained by differentiating under the sign of integration.^

9 Potr rr f (aJg-iCi) ^(a'a.yz.go)

(37)

In like manner for a vector function W
S PotW nnr Qc^- x{) W (x^, y^, %)

x^ JJJ V[{x,-x,f+{y,-y^f+{z,-z,ff ' ^"(38^^

Or

and

5PotF r r rCx2-xi)V
7=ffP^^^^' <''^

9x^

sPotw r r riXi-xi)VT
s,

_„^_ . 5Potr, .3Potr 5PotF
vPot r=i—=— + ]-iT— + ^— T— =

Sail oy^ Szj

But i {x^ -x^ + j iy^-y^ + k (zg - ^i) = ^vi-

1 If an attempt were made to obtain the second partial derivatives in the same

manner, it would be seen that the volume integrals no longer converged.
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Hence V PotF=///^ dv^. (39)

In like manner

V X PotW=//J '-1^ dv^, (40)

and V . PotW =/// ^^^ ^ i'2- (41)

These three integrals obtained from the potential by the

differentiating operators are of great importance in mathe-

matical physics. Each has its own interpretation. Conse-

, , quently although obtained so simply from the potential each

is given a separate name. Moreover inasmuch as these

integrals may exist even when the potential is divergent,

they must be considered independent of it. They are to

be looked upon as three new integrating operators defined

each upon its own merits as the potential was defined.

Let, therefore,

JJJblI^fI^ll2>.dx,dy,dz, = NewV, (42)

JJ'Jbl2lZpLl^llAdx,dy,dz, = L2.pW (43)

JJJhlzJL^?ll^l^dx^dy^dz^=^MaxW. (44)

If the potential exists, then

VPotF=NewF

V X PotW = LapW (45)

V - PotW = Max W.

The first is written Ifeiv V and read " The Newtonian of F."
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The reason for calling this integral the Newtonian is that if

V represent the density of a body the integral gives the force

of attraction at the point (a;^, y^, z{) due to the body. This

wiU be proved later. The second is written Lap W and

read " the Laplacian of W." This integral was used to a

considerable extent by Laplace. It is of frequent occurrence

in electricity and magnetism. If W represent the current

C in space the Laplacian of C gives the magnetic force at the

point (asj, y^, Sj) due to the current. The third is written

Max W and read " the MaxweUian of W." This integral was

used by Maxwell. It, too, occurs frequently in electricity

and magnetism. For instance if W represent the intensity

of magnetization I, the MaxweUian of I gives the magnetic

potential at the point (x^, y-^, z^ due to the magnetization.

To show that the Newtonian gives the force of attraction

according to the law of the inverse square of the distance.

Let dm^ be any element of mass situated at the point

(x^, ^2' ^i)-
1^^6 force at {x-^, y-^, Zj) due to dm is equal to

dmn

in magnitude and has the direction of the vector r^j from the

point (x^, y^, z^) to the point (x^, y^, Sg). Hence the force is

fi2 ^"^a
^ 12

Integrating over the entire body, or over all space according

to the convention here adopted, the total force is

where V denotes the density of matter.
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The integral may be expanded in terms of 1, j, k,

"-^"'///^^^^"-'-^///^ dv.

(^2-^1)^

v„

The three components may be expressed in terms of the po-

tential (if it exists) as

JJJ r\a ^ 9xi 3x,JJJri^
(42)'

O U %J '
V!,

° ilx "'y\U U U /^i2

It is in this form that the Newtonian is generally found in

books.

To show that the Laplacian gives the magnetic force per

unit positive pole at the point {x^, y-^, z^ due to a distribution

W (ajj, y^t 22) of electric flux. The magnetic force at (x-^^, y-^, z{)

due to an element of current dC^\s equal in magnitude to

the magnitude d 0^ of that element of current divided by the

square of the distance Vy^, I that is

dC^

The direction of the force is perpendicular both to the vector

element of current dC^ and to the line ijj joining the points.

The direction of the force is therefore the direction of the

vector product of r^g and dC^. The force is therefore

^ 12

15
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Integrating over all space, the total magnetic force acting at

the point Qx^, y^, a^) upon a unit positive pole is

This integral may be expanded in terms of i, j, k. Let

'12 = (=^2 - a^i) i + (^2 ~yi)l+ (^^2 - «i) ^•

The i, j, k components of Lap W are respectively

(43)'

j.LapW =///
<^^-^^^-^^-^"--"^^^

d.,

k . Lap W ^JJJ^^l^^^J^^^^lAIdv,

In terms of the potential (if one exists) this may be writt

. -r ^ SVotZ SPotF
1 . Lap W =—?j -z

• T «r 5PotX SPot^ ,,„,,,
J . Lap W =—,r

^
, (43)"

, T „ 3Poty SPotX
k.LapW = -^:j =

To show that if I be the intensity of magnetization at the

point (iCg, y^j^z)^ *^^*' ^^ if I be a vector whose magnitude is

equal to the magnetic moment per unit volume and whose
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direction is the direction of magnetization of the element d v^

from south pole to north pole, then the Maxwellian of I is the

magnetic potential due to the distribution of magnetization.

The magnetic moment of the element of volume dv^i&Id v^.

The potential at {x-^^yy, z^ due to this element is equal to its

magnetic moment divided by the square of the distance r^^

and multiplied by the cosine of the angle between the direc-

tion of magnetization I and the vector r^. The potential is

therefore

T^^'ldv.

Integrating, the total magnetic potential is seen to be

/// ^l' dv„ = Max I.

This integral may also be written out in terms of x, y, z.

Let

I (^2, ^2' ^2) = i^
('^a. ^2' ^2) + J -^ («'2' Vv ^^ + k C(a;2, y^i ^2)

ri2 • I = (x^ -x{)A + (2/2 - 2/1) 5 + («2 - z^) G.

If instead of x-^, y-^, Zj the variables x,y, z; and instead of

a; 2, 2^2' *2 *^® variables f, 1;, ? be used ^ the expression takes

on the form given by Maxwell.

Max I =/// \A{^-x) + B{'n-y)+ C(^-z) \~^dv.

According to the notation employed for the Laplacian

Max W .^fff(-^—^)^+(y2-y^)^+(^.-^l)^,,^,
(44)'

' Maxwell : Electricity and Magnetism, Vol. II. p. 9.
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The Maxwellian of a vector function is a scalar quantity.

It may be -written in terms of the potential (if it exists) as

3 PotX 9 Pot Y SFotZ
Max W = -^ + -^ + -1^ (44)"

Sa?! dyi dz^ ^ '

This form of expression is much used in ordinary treatises

upon mathematical physics.

The Newtonian, Laplacian, and Maxwellian, however, should

not be associated indissolubly with the particular physical

interpretations given to them above. They should be looked

upon as integrating operators which may be applied, as the

potential is, to any functions of position in space. The New-

tonian is applied to a scalar function and yields a vector

function. The Laplacian is applied to a vector function

and yields a function of the same sort. The Maxwellian

is applied to a vector function and yields a scalar function.

Moreover, these integrals should not be looked upon as the

derivatives of the potential. If the potential exists they

are its derivatives. But they frequently exist when the

potential fails to converge.

91.] Let V and W be such functions that their potentials

exist and have in general definite values. Then by (27) and

(29)

V-VPotr= V.Pot VF=Pot V-VF.

But by (45) V PotF= New F,

and V.PotVF=Max VF
Hence V- V PotF= V - NewF= Max VF

= Pot V-VF (46)

By (27) and (29) VV = PotW =VPot V.W= PotV V^ W.

But by (45) V • Pot W = Max W,

and by (45) V Pot V .W = New V • W.
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Hence VV • Pot W = V Max W = New V W
= PotVV-W (47)

By (28) V X V X Pot W = V X Pot V X W
= Pot V X V X W.

But by (45) V x Pot W = Lap W,

and V X Pot V x W = Lap V x W.

Hence V x V x Pot W = V x Lap W = Lap V x W
= Pot V X V X W. (48)

By (56), Chap. III. V • V x Pot W = 0,

or V . Pot V X W = 0.

Hence V - Lap W = Max V X W = 0. (49)

And by (62), Chap. IH. V x V PotF= 0,

or VxPotVr=0.
Hence V x NewV= Lap VV=0. (50)

And by (58), Chap. IH. VxVxW =VV.W-V-VW,
V.VW = VV-W-VxVxW.

Hence V • V W = New V •W - Lap V x W, (51)

or V • V W = V Max W — V x Lap W.

These formulae may be written out in terms of curl and

div if desired. Thus

div NewV= Max V F, (46)'

V Max W = New div W (47)'

curl Lap W = Lap curl W (48)'

div Lap W = Max curl W = (49)'

curl NewF= Lap VF = (50)'

V - V W = New div W - Lap curl W. (51)'
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Poisson's Equation

92.] Let V he any function in space such that the potential

PotF

has in general a definite value. Then

V-VPotr=-47rr, (52)

52Potr 52 PotF 32Potr , ^
or —^r—^— + 2 + ~o—5— = -4 7rF.

This equation is known as Poisson's Equation,

The integral which has been defined as the potential is a

solution of Poisson's Equation. The proof is as follows.

^^""'IJIvrJ'-

Id X2

Vi . Vi PotF=Vi .NewF= Max V^V= f f C ^^^'J^^ d v^.

The subscripts 1 and ^ have been attached to designate

clearly what are variables with respect to which the differen-

tiations are performed.

Vi . ViPotF=Vi • NewF=rrrVi — . VaF dt; 2-

But Vi — = - Va —

and Va - (f V^ — ") = V^ — • V2F+ F Vg • Vg—
\ ^12/ ^12 *'l2
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Hence -V,^ . V,V= VV^' V^ ~-V,. (vv, -)

or v,l .V3r=Fv,.v,-i + v,.(rv,-iy

Integrate

:

But V2 . V„ — = 0.

That is to say — satisfies Laplace's Equation. And by (8)

///v,. (Fv,.i) i,, =ffrv, !-.«..

Hence Vj • Vj PotF= T T Tv^ — . Vg Fci Vg (53)

= ff VV, — 'da.

The surface integral is taken over the surface which bounds

the region of integration of the volume integral. This is

taken " over all space." Hence the surface integral must be

taken over a sphere of radius B, a large quantity, and iZ must

be allowed to increase without limit. At the point (x^, yi,s-^,

however, the integrand of the surface integral becomes in-

finite owing to the presence of the term
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Hence the surface S must include not only the surface of the

sphere of radius B, but also the surface of a sphere of radius

R',& small quantity, surrounding the point (x^, y^, «j) and B

'

must be allowed to approach zero as its limit.

As it has been assumed that the potential of V exists, it is

assumed that the conditions given (Art. 87) for the existence

of the potential hold. That is

Vr^ < K, when r is large

Vr < K, when r is small.

Introduce polar coordinates with the origin at the point

(ajj, y^, 2j). Then r^^ becomes simply r

w 1 „ 1 r

r 12

Then for the large sphere of radius B

1 r

Hence the surface integral over that sphere approaches zero

as its limit. For

|//rv.2....
|<JJ^,,,,=2^.

Hence when B becomes infinite the surface integral over the

large sphere approaches zero as its limit.

For tlie small sphere

1 r
Vi da. = - — r^sme dd d6.

7-12 7-3 ^

Hence the integral over that sphere becomes

Tsin^ de d^.-//'
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Let V be supposed to be finite and continuous at the point

(^i» Vv '^i)
which has been selected as origin. Then for the

surface integral V is practically constant and equal to its

value

at the point in question.

f fame dO d<f> = A'ir.

Hence - f Cvsiae dd d<j) = - 4:'rrV

when the radius B' of the sphere of integration approaches

zero as its limit. Hence

and V . V PotF= - 4 ttF. (52)

In like manner if W is a vector function which has in

general a definite potential, then that potential satisfies Pois-

son's Equation.

V . V Pot W = - 4 TT W. (52)'

The proof of this consists in resolving W into its three com-

ponents. For each component the equation holds. Let

W = Xi + Fj + ^k,

V- VPotX=-4 7rX,

V. VPotF=-4 7r F,

V . V Pot ^ = - 4 TT ^.

Consequently

V • V Pot (Xi + Fj + ^k) = - 4 TT (Xi + Fj + -^k).
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Theorem : IfV andW are suchfunctions of position in space

that their potentials exist in general, then for all points at which

V and W are finite and continuous those potentials satisfy

Poisson's Equation,

V . V Pot F= - 4 ttF, (52)

V • V Pot W = - 4 TT W. (52)'

The modifications in this theorem which are to be made at

points at which V and W become discontinuous will not be

taken up here.

93. J It was seen (46) Art. 91 that

V . V PotF= V . Newr= Max VF.

Hence V • NewF= -4 tt F (53)

or MaxVF=-4 7rF.

In a similar manner it was seen (51) Art. 91 that

V . V Pot W = V Max W — V X Lap W
= New V W — Lap V x W.

Hence V Max W — V x Lap W = — 4 tt W, (54)

or New V •W — Lap VxW = — 47rW. (54)'

By virtue of this equality W is divided into two parts.

W = :j— LapVx W — :i— NewV'W. (55)
47r ^ 47r ^ '

Let W = Wi + W 2'

where Wj = j- Lap V x W = ^^ ^^P ^'^l ^ (^6)

W2 = --i—NewV.W= -:^NewdiTW. (57)
47r 47r ^ "^
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Equation (55) states that any vector function W multiplied

by 4 TT is equal to the difference of the Laplacian of its curl

and the Newtonian of its divergence. Furthermore

V . Wj = J— V . LapVxW = -i— V'Vx ^^^P ^i-4 TT 4 TT

But the divergence of the curl of a vector function is zero.

Hence V • Wj = div Wj = (58)

Vx"W2 = -;i— Vx New V • W, = --r— V X VMax Wn.
4 TT 4 TT

But the curl of the derivative of a scalar function is zero.

Hence V x Wg = curl Wg = 0. (59)

Consequently any vector function W which has a potential

maybe divided into two parts of which one has no divergence

and of which the other has no curl. This division of W into

two such parts is unique.
"

Mn case a vector function has no potential but both its curl

and divergence possess potentials, the vector function may be

divided into three parts of which the first has no divergence

;

the second, no curl ; the third, neither divergence nor curl.

Let W = T— LapVxW-;;— NewV-W + Wo. (55)'
4 TT 4 TT

As before

—- V - LapVxW=r— V.VxPotVxW =
47r 47r

and ^ V X New V.W = 7-VxVPotV.W = 0.
47r 47r

The divergence of the first part and the curl of the second

part of W are therefore zero.
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-i-VxLapVxW = ;i^VxVxPotVxW
Air

*^
47r

= J_VV-PotVx W-T- V- VPot V X W.
iir 47r

J- VV = PotVxW = -^ VPotV-Vx W = 0,

for V . V X W = 0.

Hence ^- V • VPot V X W = V X W.
Air

Hence -— VxLapVxW = VxW = Vx"Wi.

The cuxl of W is equal to the curl of the first part

-;— LapV X W

into which W is divided. Hence as the second part has no

curl, the third part can have none. Moreover

4 TT

Thus the divergence of W is equal to the divergence of

the second part

"^ New V • W.

into which W is divided. Hence as the first part has no

divergence the third can have none. Consequently the third

part Ws has neither curl nor divergence. This proves the

statement.

By means of Art. 96 it may be seen that any function W3
which possesses neither curl nor divergence, must either
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vanish throughout all space or must not hecome zero at

infinity. In physics functions generally vanish at infinity.

Hence functions which represent actual phenomena may be

divided into two parts, of which one has no divergence and

the other no curl.

94.J Definition : A vector function the divergence of which

vanishes at every point of space is said to be solenoidal. A
vector function the curl of which vanishes at every point of

space is said to be irrotational.

In general a vector function is neither solenoidal nor irrotar

tional. But it has been shown that any vector fxmction which

possesses a potential may be divided in one and only one

way into two parts W^, Wg of which one is solenoidal and

the other irrotational. The following theorems may be stated.

They have all been proved in the foregoing sections.

With respect to a solenoidal /Mnci;io» W^, the operators

-— Lap and V X or curl

are inverse operators. That is

J— Lap V X Wi = V X^ Lap Wi = Wi. (60)

Applied to an irrotational function Wg either of these opera-

tors gives zero. That is

— LapW2 = 0,VxW2 = 0.
(61)

With respect to an irrotational function W^, the operators

~— New and — 'w • or — div

are inverse operators. That is

-^ New V • Wa = - V . -^ New Wj = Wj. (62)
4 TT 4 'JT
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With respect to a sosX&v function V the operators

— V'or — div and -— New,
47r

and also — ~.— Max and V
47r

are inverse operators. That is

_V.ri-NewF=F (63)

and —-r- Max VF= V.
47r

With respect to a solenoidal function W^ the operators

-J— Pot and V xV X or curl curl
47r

are inverse operators. That is

^ Pot V X V X Wi = V X V X — Pot Wi = Wj. (64)

With respect to an irrotational function Wg the operators

7— Pot and — VV

•

47r

are inverse operators. That is

-^PotVV.W2 = -VV.^PotW2 = W2.(65)

With respect to any scalar or vector function V, W the

operators

-.— Pot and — V • V

are inverse operators. That is
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_PotV.VF=-V.VT^PotF=r
47r Air

and - — Pot V . V W = - V . V :r- Pot W = W. (66)
47r 47r

'^

With respect to a solenoidal function Wj the differentiating

operators of the second order

— V . V and V x V X
are equivalent

- V . VWi = V X V X Wj. (67)

With respect to an irrotational function Vf^the differentiat-

ing operators of the second order

V . V and V V •

are equivalent. That is

V.VW2 = VV.W2. (68)

By integrating the equations

4 7rF=- V.NewF"

and 4 TT W = V X Lap W — V Max W
by means of the potential integral Pot

4 IT Pot V= - Pot V - New V= - Max New V (69)

4Tr Pot W = Pot V X Lap W - Pot V Max W
4 TT Pot W = Lap Lap W — New Max W. (70)

Sencefor BC&laT functions and irrotational vector functions

— -.— New Max
Air

is an operator which is equivalent to Pot. For solenoidal vector

functions the operator
^

— -T— Lap Lap
Air
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gives the potential. For any vector function the first operator

gives the potential of the irrotational part; the second, the

potential of the solenoidal part.

*95.] There are a number of double volume integrals which

are of such frequent occurrence in mathematical physics as

to merit a passing mention, although the theory of them will

not be developed to any considerable extent. These double

integrals are all scalar quantities. They are not scalar func-

tions of position in space. They have but a single value.

The integrations in the expressions may be considered for

convenience as extended over all space. The functions by

vanishing identically outside of certain finite limits deter-

mine for all practical purposes the limits of integration in

case they are finite.

Given two scalar functions U, V of position in space.

The mutual potential or potential product, as it may be called,

of the two functions is the sextuple integral

^otiu,v)=jjjjj
f^''-y-'^l

^ ^^-y^'"^^
dv, dv,.

""''

(71)
One of the integrations may be performed

Pot ( U, F)=fff^(^v Vv h) Pot ^^^1

=JJJ^i^^^ Vv »2) Pot U d v^. (72)

In a similar manner the mutual potential or potential product

of two vector functions W, W" is

Pot(W^W^O=//////^^("^'^^'^^^-^"("^'^^'-^> dv,dv,

(71)'

This is also a scalar quantity. One integration may be car-

ried out
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Pot (W, W") =fjfw'{x^, yi, si) • PotW" dvi

=fff^" (^2' 2/2' «2) • Pot W' d V^. (72)'

The mutual Laplacian or Laplacian product of two

vector functions W', W" of position in space is the sextuple

integral

Lap(W',W")

=//////w' {x^, y^, »i) •^ X '^" («:2. 2^2. ^2) '^^i ^^2-

(73)
One integration may be performed.

Lap (W, W") = f C fw" (x^, 2/2, z^) . LapW rf t^3

-^-^-^
(74)

^IIS^ (a!!, yi. 2i) • Lap W" £it>i.

The Newtonian product of a scalar function V, and a vector

function W of position in space is the sextuple integral

New ( ^'^=///J//w(a3i,2/i,%) •^ Vix^,y^,z^)dv^ dv^.

By performing one integration

New ( V, W) =fff'^ (a'a' 2^2' ^2) • NewFd ^3. (76)

In like manner the MaxwelUan product of a vector function

W and a scalar function F of position in space is the

integral

MaxiW,V)=ffJJJJvix^,y„z{)^^.W(x^,y^,z^)dv,dv^.
''

(77)

16
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One integration yields

Max (W, F) = r r r r(a;i,yi,»i)Max W «i ^i =- New(F, W).

(78)

By (53) Art. 93.

477 UFotV=-(y • NewfT") PotF.

V • [New?7-PotF] =(V • New U) PotF+ (NewCT) •V PotF.

-(V.NewCO PotF=-V. [NewIT'PotFJ+NewZJ.NewF.

Integrate

:

4k7r f f fuFotVdv = - f f fV' [NewtrPotFJdw

+ f f f
NewU . NewF cZ v.

47r Pot (CT; F) = r r TNewCT". NewFd«

- r r Pot F New C7-. (Z a. (79)

The surface integral is to be taken oyer the entire surface S
bounding the region of integration of the volume integral.

As this region of integration is " all space," the surface S may

be looked upon as the surface of a large sphere of radius B.

If the functions U and F vanish identically for all points out-

side of certain finite limits, the surface integral must vanish.

Hence

4 TT Pot ( CT; F) = r r Tncw U . New Vdv. (79)'

By (54) Art. 93,

47rW". PotW' = V X LapW" • PotW
- V Max W" • Pot W'.
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But V . [Lap W" X Pot W] = PotW • V x Lap W"

- Lap W" • V X Pot W',

and V . [Max W" Pot W] = PotW • V Max W"

+ Max W" V • Pot W.

Hence V x Lap W" • PotW = V • [Lap W" x Pot W]
+ Lap W" . Lap W,

and V Max W" • PotW = V • [Max W" Pot W]
— Max W" Max W.

Hence substituting:

4 TT W" • PotW = Lap W • Lap W + Max W Max W"

+ V . [Lap W" X Pot W]
- V. [MaxW'PotW].

Integrating;

4 IT Pot (W, W") =C f TLap W'. LapW'ciw

+ r r CuaxW M&xW" dv (80)

- r r Pot W' X LapW" da- f C Max W" PotW • d a.

If now W' and W" exist oftly in finite space these surface

integrals taken over a large sphere of radius B must vanish

and then

4 TT Pot (W'.W") = r r fLapW • Lap W" d v

+ f f /"MaxW Max W" d v. (80)'

* 96.] There are a number of useful theorems of a function-

theoretic nature which may perhaps be mentioned here owing
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to their intimate connection with the integral calculus of

vectors. The proofs of them will in some instances be given

and in some not. The theorems are often useful in practical

applications of vector analysis to physics as well as in purely

mathematical work.

Theorem : If V (x, y, z) be a scalar function of position

in space which possesses in general a definite derivative VT
and if in any portion of space, finite or infinite but necessarily

continuous, that derivative vanishes, then the function V is

constant throughout that portion of space.

Given VF=0.

To show F= const.

Choose a fixed point {x-^, y^, Zj) in the region. By (2) page

180

/,

But

V r. <^ r = V(x, y,z)-V {x^, y^, z^.

JvV-dr=fo.dT = Q.

Hence V{x, y, z) = V {x-^, y^, z^) = const.

Theorem : If V (a;, y, «) be a scalar function of position

in space which possesses in general a definite derivative V V;

if the divergence of that derivative exists and is zero through-

out any region of space,^ finite or infinite but necessarily

continuous; and if furthermore the derivative VF vanishes

at every point of any finite volume or of any finite portion of

surface in that region or bounding it, then the derivative

vanishes throughout all that region and the function F re-

duces to a constant by the preceding theorem.

1 The term throughout any region of space must be regarded as indnding the

boundaries of the legion as well as the region itself.
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Given V • V F"= for a region T,

and VF'= for a finite portion of surface S.

To show V— const.

Since VF vanishes for the portion of surface S, Fis certainly

constant in S. Suppose that, upon one side of S and in the

region T, V were not constant. The derivative V V upon

this side of S has in the main the direction of the normal to

the surface S. Consider a sphere which lies for the most

part upon the outer side of S but which projects a little

through the surface S. The surface integral of VF over

the small portion of the sphere which projects through the

surface S cannot be zero. For, as V F is in the main normal

to S, it must be nearly parallel to the normal to the portion

of spherical surface under consideration. Hence the terms

VF.<?a

in the surface integral all have the same sign and cannot

cancel each other out. The surface integral of V F over

that portion of S which is intercepted by the spherical sur-

face vanishes because V F is zero. Consequently the surface

integral of VF taken over the entire surface of the spherical

segment which projects through S is not zero.

But f CvV-da,= C f fv 'VVdv = 0.

Hence C C^V-d& = 0.

It therefore appears that the supposition that V is not

constant upon one side of S leads to results which contradict

the given relation V • VF= 0. The supposition must there-

fore have been incorrect and F must be constant not only in

8 but in all portions of space near to <Sf in the region T. By
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an extension of the reasoning V is seen to be constant

throughout the entire region T.

Theorem : If V (a;, y, s) be a scalar function of position in

space possessing in general a derivative VV and if through--

out a certain region ^ T oi space, finite or infinite, continuous

or discontinuous, the divergence V • VF of that derivative

exists and is zero, and if furthermore the function F"possesses

a constant value c in all the surfaces bounding the region

and V{x, y, z) approaches c as a limit when the point (x, y, z)

recedes to infinity, then throughout the entire region T the

function V has the same constant value c and the derivative

VV vanishes.

The proof does not differ essentially from the one given

in the case of the last theorem. The theorem may be gen-

eralized as follows

:

Theorem : If V(x, y, z) be any scalar function of position

in space possessing in general a derivative W; if U (x, y, z)

be any other scalar function of position which is either posi-

tive or negative throughout and upon the boundaries of a

region T, finite or infinite, continuous or discontinuous; if

the divergence V - [ f7V F] of the product of U and VV
exists and is zero throughout and upon the boundaries of T
and at infinity ; and if furthermore V be constant and equal

to c upon all the boundaries of T and at infinity ; then the

function V is constant throughout the entire region T and

is equal to c.

Theorem : If V {x, y, z) be any scalar function of position

in space possessing in general a derivative VF; if through-

out any region T of space, finite or infinite, continuous or

discontinuous, the divergence V - V F of this derivative exists

and is zero ; and if in all the bounding surfaces of the region

T the normal component of the derivative VF vanishes and

at infinite distances in T (if such there be) the product

1 The legion includes its boundaries.
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7-2 g Y/ 3 r vanishes, where r denotes the distance measured

from any fixed origin ; then throughout the entire region T
the derivative VF vanishes and in each continuous portion

of y F" is constant, although for different continuous portions

this constant may not be the same.

This theorem may be generalized as the preceding one

was by the substitution of the relation V • ( CT"V F") = for

V.VF=Oand Ur^9V/9r = ioi r^9V/ 9r = 0.

As corollaries of the foregoing theorems the following

statements may be made. The language is not so precise

as in the theorems themselves, but will perhaps be under-

stood when they are borne in mind.

If VU = VV, then U and V differ at most by a

constant.

If V.VC7'=V.Vr and if VZ7 = VFin any finite

portion of surface S, then V ?7= V F" at all points and V
differs from V only by a constant at most.

If V-VU=V'VV and if 11= V in all the bounding

surfaces of the region and at infinity (if the region extend

thereto), then at all points fT'and Faro equal.

If V-VC7'=V«VF and if in all the bounding surfaces

of the region the normal components of. VU and VFare
equal and if at infinite distances r^(9 V'/9r — 9 V/9r') is

zero, then V ?7and V Fare equal at all points of the region

and U differs from F only by a constant.

Theorem : If W ' andW " are two vector functions of position

in space which in general possess curls and divergences ; if

for any region T, finite or infinite but necessarily continuous,

the curl of W' is equal to the curl of W" and the divergence

of W' is equal to the divergence of W"; and if moreover

the two functions W' and W" are equal to each other at

every point of any finite volume in T or of any finite surface

in T or bounding it; then W' is equal to W" at every point

of the region T.
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Since V x W = V x W", V x (W - W") = 0. A vec-

tor function whose curl vanishes is equal to the derivative ^

of a scalar function V (page 197). Let vr=W'-W".
Then V • V F= owing to the equality of the divergences.

The theorem therefore becomes a corollary of a preceding one.

Theorem : If W' and W" are two vector functions of posi-

tion which in general possess definite curls and divergences

;

if throughout any aperiphractic^ region T, finite but not

necessarily continuous, the curl of W' is equal to the curl of

W" and the divergence of W' is equal to the divergence of

W"; and if furthermore in all the bounding surfaces of the

region T the tangential components W' and W" are equal;

then W' is equal to W" throughout the aperiphractic region T.

Theorem: If W' and W" are two vector functions of posi-

tion in space which in general possess definite curls and

divergences ; if throughout any acyclic region T, finite but not

necessarily continuous, the curl of W' is equal to the curl

W" and the divergence of W' is equal to the divergence of

W"; and if in all the bounding surfaces of the region T the

normal components of W' and W" are equal ; then the func-

tions W' and W" are equal throughout the region acyclic T.

The proofs of these two theorems are carried out by means

of the device suggested before.

Theorem: If W' and W" are two vector functions such

that V • V W' and V • VW" have in general definite values

in a certain region T, finite or infinite, continuous or discon-

tinuous ; and if in all the bounding surfaces of the region

and at infinity the functions W' and W" are equal ; then W'
is equal to W" throughout the entire region T.

The proof is given by treating separately the three com-

ponents of W' and W".

1 The region T may have to be made acyclic by the insertion of diaphragms.

' A legion which encloses within itself another region is said to be periphrac-

tic. If it encloses no region it is aperiphractic.
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SuMMAUT OP Chapter IV

The line integral of a vector function W along a curve C is

defined as

f W 'di = f IW^dx + W^dy + Wgdz']. (1)

The line integral of the derivative V F" of a scalar function

V along a curve C from r„ to r is equal to the difference

between the values of V at the points r and to and hence the

line integral taken around a closed curve is zero ; and con-

versely if the line integral of a vector function W taken

around any closed curve vanishes, then W is the derivative

V F of some scalar function V.

pVV. dT= F(r) - F(r<,) (2)

CvV'dv=0 (3)

and if CW • dt = 0,thenW = VV.

Illustration of the theorem by application to mechanics.

The surface integral of a vector function W over a surface

S is defined as

C C W ' d& = f f IWj^dy dz + W^dzdx + W^dx dy'].

Gauss's Theorem : The surface integral of a vector func-

tion taken over a closed surface is equal to the volume

integral of the divergence of that function taken throughout

the volume enclosed by that surface

f C fv 'Vf dv=C fW'da, (7)
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or

= C C lXdydz+Ydzdx + Zdxdy'], (8)

if X, Y, Z be the three components of the vector function W.

Stokes's Theorem: The surface integral of the curl of a

vector function taken over any surface is equal to the line

integral of the function taken around the line bounding the

surface. And conversely if the surface integral of a vector

function TJ taken over any surface is equal to the line integral

of a function W taken around the boundary, then U is the

curl of W.

ffv XW 'd2i=fw-dT, (11)

and if Jjv • d a =J W ' dr, then TI = V X W. (12)

Application of the theorem of Stokes to deducing the

equations of the electro-magnetic field from two experimental

facts due to Faraday. Application of the theorems of Stokes

and Gauss to the proof that the divergence of the curl of

a vector function is zero and the curl of the derivative of

a scalar function is zero.

Formulae analogous to integration by parts

juVv'dT— [uv'] — I vV u • di, (14)

JJa^^ X V . da = Ig uv '^r — JJ M V X V • da, (15)

jj^"7uxVv'dA=JguVv ' dr = —J^vVu > dr, (16)
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/ / I uV 'Vdv= j I uv ' da,—
j j

jVu'vdv, (17)

l'Cvuxv'da. = -rrfvu-Vxvdv. (18)

Green's Theorem:

f f f"^
u 'V V dv= jjuVv'da.— jjruV • V v dv

= CI'vVu'd&-jjfvV-Vudv, (19)

fffiiiV'Vv — vV-Vu) dv=C C (uVv — vVu)-dai. (20)

Kelvin's generalization:

ill w'Vu'Vvdv=
j j uw'Vv»da— j I j ^' V[w;Vi;] dv

= 1 ivwV ti-da.- f C fv'V'lwVuJdv. (21)

The integrating operator known as the potential is defined

by the equation

Pot V=fff^^^^^:^^ dx, dy, dz,. (22)

Pot W =J*Jjnf?Ll^?lf2) ^^^ ^y^ ^,^, (23)

VPotF=PotVF; (27)

V X Pot W = Pot V X W, (28)

V . Pot W = Pot V . W, (29)

V. vPot r=Potv. vr, (so)



rn n^. y.^ ^.)
^^^ ^y^ ^,^.
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V . Lap W = Max V x W = 0, (49)

V X New r= Lap VF= 0, (50)

V . V "W = New V . W - Lap V X W
= V Max W - V X Lap W. (51)

The potential is a solution of Poisson's Equation. That is,

V. VPotr = -47rF, (52)

and V . V Pot r= - 4 tt W. (52)'

F=7^V.Newr, (53)
4 IT

W = 1— Lap V X W — ;;— New V • W. (55)
47r ^ 4Tr ^ ^

Hence W is divided into two parts of which one is

solenoidal and the other irrotational, provided the potential

exists. In case the potential does not exist a third term Wg
must be added of which both the divergence and the curl

vanish. A list of theorems which foUow immediately from

equations (52), (52)', (53), (55) and which state that certain

integrating operators are inverse to certain differentiating

operators. Let F be a scalar function, W, a solenoidal vector

function, and 'W2 an irrotational vector function. Then

;j— Lap V X Wi = V X ;j— Lap Wi = W^. (60)
4 TT 4 TT

^ Lap W2 = 0, V X Wj = (61)

--r— New V . Wa = - V .— New Wj = Wg. (62)
47r 4 TT
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f-V. ^NewF= r
47r

--^ Max VF= F.
47r

(63)

r^ Pot V X V X Wi = V X V X Pot Wi = Wi (64)
47r

—- Pot VV . Wa = - V • V —
47r

^ 477
Pot VV . Wj = - V . V J- Pot Wa = Wa- (65)

_ Jl Pot V . VF^-V.V:;— Pot F=F
4 TT 4 TT

1 1
(^^)

__Pot V .VW = - V. V-p-PotW=W.
- 47r 47r

-V.V"Wi = VxVxWi (67)

V - V Wjj = VV . Wg (68)

4 TT Pot F= - Max New F (69)

4 TT Pot W = Lap Lap W - New Max W. (70)

Mutual potentials Newtonians, Laplacians, and Maxwellians

may be formed. They are sextuple integrals. The integra-

tions cannot all be performed immediately ; but the first three

may be. Formulae (71) to (80) inclusive deal with these inte-

grals. The chapter closes with the enunciation of a number

of theorems of a function-theoretic nature. By means of

these theorems certain facts concerning functions may be

inferred from the conditions that satisfy Laplace's equation

and have certain boundary conditions.

Among the exercises number 6 is worthy of especial atten-

tion. The work done in the text has for the most part assumed

that the potential exists. But many of the formuloR connecting

Newtonians, Laplacians, and Maxwellians hold when the poten-

tial does not exist. These are taken up in Exercise 6 referred to.
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ExEBCisEs ON Chapter IV

1.' If F is a scalar function of position in space the line

integral

' .VdT

is a vector quantity. Show that

fvdi = - f f VV xda.= ffd&xVV.Jo U O s J Js

That is ; the line integral of a scalar function around a

closed curve is equal to the skew surface integral of the deriv-

ative of the function taken over any surface spanned into

the contour of the curve. Show further that if F" is constant

the integral around any closed curve is zero and conversely

if the integral around any closed curve is zero the function V
is constant.

Hint : Instead of treating the integral as it stands multiply

it (with a dot) by an arbitrary constant unit vector and thus

reduce it to the line integral of a vector function.

2. If W is a vector function the line integral

^=L^ X dx

is a vector quantity. It may be called the shew line integral

of the function W. If c is any constant vector, show that if

the integral be taken around a closed curve

H.c=// (cV 'W — O'VW)- da. = C'J WxdT,

1 The first four exercises are taken from Foppl's Einfuhrnng in die Max-

well'sche Theorie der Electricitat where they are worked out.
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and H.c = c.
I

/ / V. Wc?a- J J^V (W-da)
I

In case the integral is taken over a plane curve and the

surface S is the portion of plane included by the curve

H =J fg[ V. W cZ a - V (W • c? a)j.

Show that the integral taken over a plane curve vanishes

when W is constant and conversely if the integral over any

plane curve vanishes W must be constant.

3. The surface integral of a scalar function V is

S=fJ^Vda.

This is a vector quantity. Show that the surface integral

of F taken over any closed surface is equal to the volume

integral of VF taken throughout the volume bounded by

that surface. That is

//.^'^^ = -///^^^'

Hence conclude that the surface integral over a closed sur-

face vanishes if F be constant and conversely if the surface

integral over any closed surface vanishes the function F must

be constant.

4. If W be a vector function, the surface integral

T= C f da. X W

may be called the shew surface integral. It is a vector

quantity. Show that the skew surface integral of a vector
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function taken over a closed surface is equal to the volume

integral of the vector function taken throughout the volume

bounded by the surface. That is

Hence conclude that the skew surface integral taken over

any surface in space vanishes when and only when W is an

irrotational function. That is, when and only when the line

integral of W for every closed circuit vanishes.

5. Obtain some formulae for these integrals which ar^

analogous to integrating by parts.

6. The work in the text assumes for the most part that the

potentials of Fand W exist. Many of the relations, however,

may be demonstrated without that assumption. Assume that

the Newtonian, the Laplacian, the Maxwellian exist. For

simplicity in writing let

1 ^ r,,

^n ^ 12

Then New V=fff^i Pn ^(^2' Vv H) <^^p (81)

Lap W =fff^iPi2 X ^ (.^v Vt ^2) ^'«v (82)

Max W
=J J J ^ii'12 '"W («2' Vv 22) ^ ^2' (83)

Vli'l3=-V2Pi2 (84)

'^•i(Pn'^ = ^iPn ^ + ;'i2V2F,

JJJ'^iPn Vdv,=fffv,(p,,V)dv,

-JJJpn'^.Vdv,.
17
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By exercise (3) / / / "^2 O12 ^ '^^a =J J -^12
'^^^•

It can be shown tliat if F is such a function that New V
exists, then this surface integral taken over a large sphere of

radius B and a small sphere of radius B' approaches zero

when B becomes indefinitely great; and B', indefinitely

small. Hence

or New F= Pot VF. (85)

Prove in a similar manner that

Lap W = Pot V X W, (86)

Max W = Pot V . W. (87)

By means of (85), (86), (87) it is possible to prove that

V X Lap W = Lap V X W,

V = New F=Max VF,

V Max W = New V • W.
Then prove

V X LapW= rrA? 12VV-W dv^ -fffpuV'VWdv^

and V Max W=jj ip^^ V V W dv^.

Hence V X Lap W - V Max W = - T T fpi^^-VW dv^.

Hence V x Lap "W - V Max W = 4 tt "W. (88)

7. An integral used by Helmholtz is
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or if W be a vector function

M{W)^JJfr,^Wdv^. (90)

Show that the integral converges if V diminishes so rapidly

that

when r becomes indefinitely great.

V5"(F) = S"(VF) = New(r2F:), (91)

V . ^ (W) = ^ (V . W) = Max (7-2 W), (92)

V X ^ (W) = ^ (V X W) = Lap (r-2 W), (93)

V-V-H"(r)=-2^(V-VF) = Max(r2VF) = 2PotF (94)

V - V ^(W) = jS"(V . V W) = 2 Pot W. (95)

fi-(F)=-^PotPotF (96)

£ (W) = - r^ Pot Pot W. (97)

-2W = VxVxS-(W) + VV.j3- (W). (98)

8. Give a proof of Gauss's Theorem which does not depend

upon the physical interpretation of a function as the flux of a

fluid. The reasoning is similar to that employed in Art. 51

and in the first proof of Stokes's Theorem.

9. Show that the division of W into two parts, page 235,

is unique.

10. Treat, in a manner analogous to that upon page 220,

the case in which V has curves of discontinuities.



CHAPTER V

LINEAB VECTOR PTINCTIONS

97.] Attee the definitions of products had been laid down

and applied, two paths of advance were open. One was

differential and integral calculus ; the other, higher algebra

in the sense of the theory of linear homogeneous substitutions.

The treatment of the first of these topics led to new ideas

and new symbols — to the derivative, divergence, curl, scalar

and vector potential, that is, to V, V«, Vx, and Pot with the

auxiliaries, the Newtonian, the Laplacian, and the Maxwellian.

The treatment of the second topic will likewise introduce

novelty both in concept and in notation— the linear vector

function, the dyad, and the dyadic with their appropriate

symbolization.

The simplest example of a linear vector function is the

product of a scalar constant and a vector. The vector r'

r' = cr (1)

is a linear function of r. A more general linear function

may be obtained by considering the components of r individ-

ually. Let i, j, k be a system of axes. The components of

r are

i • r, j • r, k • r.

Let each of these be multiplied by a scalar constant which

may be different for the different components.

"li.T, CjJT, Cgk.r.
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Take these as the components of a new vector r'

r' = i (cii.r) + j (Cijj.r) + k (Cg k • r). (2)

The vector r' is then a linear function of r. Its components

are always equal to the corresponding components of r each

multiplied by a definite scalar constant.

Such a linear function has numerous applications in geom-

etry and physics. If, for instance, i, j, k be the axes of a

homogeneous strain and c-y., c^, c^,, the elongations along these

axes, a point

r = ia;-l-jy + k2

becomes r' = i c^ a; + j Cg y + k Cg «,

or r ' = i Cj i . r + j (jj j • r + k Cg k • r.

This sort of linear function occurs in the theory of elasticity

and in hydrodynamics. In the theory of electricity and

magnetism, the electric force E is a linear function of the

electric displacement D in a dielectric. For isotropic bodies

the fimction becomes merely a constant

But in case the body be non-isotropic, the components of the

force along the different axes will be multiplied by different

constants Aj, Ag, ^3. Thus

E = iAii.D + jAjjj .D + kAgk-D.

The linear vector function is indispensable in dealing with

the phenomena of electricity, magnetism, and optics in non-

isotropic bodies.

98.] It is possible to define a linear vector function, as has

been done above, by means of the components of a vector.

The most general definition would be
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Definition : A vector r' is said to be a linear vector func-

tion of another vector r when the components of r' along

three non-coplanar vectors are expressible linearly with scalar

coefficients in terms of the components of r along those same

vectors.

If T — xa + 1/Ta + zc, where [a b c] ^ 0,

and t' = x'& + T/'h + z'c,

and if x' = aj^x + hiy + c^z^

y' = a^x-\-l^y-\- c^z, (3)

z' ^a^x + l^y + c^z,

then r' is a linear function of r. (The constants a^, 5j, Cj,

etc., have no connection with the components of a, b, c par-

allel to i, j, k.) Another definition however is found to be

more convenient and from it the foregoing may be deduced.

Definition : A continuous vector function of a vector is

said to be a linear vector function when the function of the

sum of any two vectors is the sum of the functions of those

vectors. That is, the function /is linear if

/(ri + r2)=/(ri)+/(r2). (4)

Theorem : If a be any positive or negative scalar and if /
be a linear function, then the fimction of a times r is a times

the function of r.

/(ar) = a/(r). (5)

And hence

f(air^ + a^T^ + a^v^+ . .

.)

= «i/(ri) + aj(y^)+ a,f(T^) +... (5)'

The proof of this theorem which appears more or less

obvious is a trifle long. It depends upon making repeated

use of relation (4).

/(r + r)=/(r)+/(r) = 2/(r).
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Hence /(2r) = 2/(r).

In lite manner / («, r) = nf (r)

where n is any positive integer.

Let m be any other positive integer. Then by the relation

just obtained

\ m ) \m

J

and /('±')^l/(r).
\m, J m

Hence f ( n—^=f(— A=— f (j).
\ m J \'m J m

That is, equation (5) has been proved in case the constant a

is a rational positive number.

To show the relation for negative numbers note that

/(0)=/(0 + 0) = 2/(0).

Hence /(0) = 0.

But /(O) =/(r-r) =/(r +(-r)) =/(r) +/(-r).

Hence / (r) = —/ (— •

To prove (5) for incommensurable values of the constant

a, it becomes necessary to make use of the continuity of the

function /. That is

f./C")=/(jf„(.r))
LiM
X

Let X approach the incommensurable number a by passing

through a suite of commensurable values. Then

/(a!r) = x/(r).

Hence Lim y ^^ ,) = a / (r)
05 z^ w
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^™ (irr) = ar.
x = a

Hence / (« r) = ^ / (')

which proves the theorem.

Theorem : A linear vector function/ (r) is entirely deter-

mined when its value for three non-coplanar vectors a, b, c are

known.

Let l=/(a),

m=/(b),

r=/(o).

Since r is any vector whatsoever, it may be expressed as

r = a;a + yb + zc.

Hence /(r) = a;l + ym + 2ft.

99.] In Art. 97 a particular case of a linear function was

expressed as

r' = 1 Cj i • r + j Cg j • r + k Cg k . r.

For the sake of brevity and to save repeating the vector r

which occurs in each of these terms in the same way this

may be written in the symbolic form

r ' = (i cj 1 + j C2 j + k cj k) . r.

In like manner if a^, a^, aj • • • be any given vectors, and bj, \,
bg, • • • another set equal in number, the expression

r' = ai bj .r + ajba'T + ajbg-r + • •• (6)

is a linear vector function of r ; for owing to the distributive

character of the scalar product this function of r satisfies

relation (4). For the sake of brevity r' may be written sym-

bolically in the form

r'=(aibi-)-aab2-l-a3bg + ...)T. (6)'
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No particular physical or geometrical significance is to be

attributed at present to the expression

(aibi + agba + agbg + ...)• (7)

It should be regarded as an operator or symbol which con-

verts the vector r into the vector r' and which merely

affords a convenient and quick way of writing the relation

(6).

Definition : An expression a b formed by the juxtaposition

of two vectors without the intervention of a dot or a cross is

called a dyad. The symbolic sum of two dyads is called a

dyadic binomial ; of three, a dyadic trinomial ; of any num-

ber, a dyadic polynomial. For the sake of brevity dyadic

binomials, trinomials, and polynomials will be called simply

dyadics. The first vector in a dyad is called the antecedent

;

and the second vector, the consequent. The antecedents of a

dyadic are the vectors which are the antecedents of the

individual dyads of which the dyadic is composed. In like

manner the consequents of a dyadic are the consequents of

the individual dyads. Thus in the dyadic (7) aj, aj, aj • • • are

the antecedents and b^, \, bg • • • the consequents.

Dyadics wUl be represented symbolically by the capital

Greek letters. When only one dyadic is present the letter

wiU generally be used. In case several are under consid-

eration other Greek capitals will be employed also. With

this notation (7) becomes

<?> = aibi-|-a2b2 + a3b3-f-..., (7)'

and (6)' may now be written briefly in the form

T>=0'r. (8)

By definition <? • r = aj b^ • r + ag bg • r 4- ag bg • r + • • •

The symbol (P-r is read (? dot r. It is called the direct

product of into r because the consequents b^, bg, bg • • • are
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multiplied into r by direct or scalar multiplication. The

order of the factors and r is important. The direct

product of r into <? is

r . # = r • (ajbj + ajbg + agbg + ••)

= r 'ajbi + r'a^bg + r« ajbg + •• • (9)

Evidently the vectors • r and r • (P are in general different.

Definition : When the dyadic <? is multiplied into r as # • r,

is said to be a prefactor to r. When r is multiplied in (? as

r • <?, is said to be a postfactor to r.

A dyadic used either as a prefactor or as a postfactor to a

vector r determines a linear vector function of r. The two linear

vector functions thus obtained are in general different from

one another. They are called conjugate linear vector func-

tions. The two dyadics

(P = aibi + a2b2 + agbg + •••

and f = biai + bgag + bgag + •••5

each of which may be obtained from the other by inter-

changing the antecedents and consequents, are called conju-

gate dyadics. The fact that one dyadic is the conjugate of

another is denoted by aflSxing a subscript C to either.

Thus y^=0o 0=^0-

Theorem: A dyadic used as a postfactor gives the same

result as its conjugate used as a prefactor. That is

T'0=0c'r. (9)

100.] Definition : Any two dyadics and W are said to

be equal

when -T = W -T for all values of r,

or when r . ^ = r • f for all values of r, (10)

or when s • (^ • r = s • Sf • r for all values of s and r.
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The third relation is equivalent to the first. For, if the

vectors • r and 5P" • r are equal, the scalar products of any

vector s into them must be equal. And conversely if the

scalar product of any and every vector s into the vectors • r

and W'T are equal, then those vectors must be equal. In

like manner it may be shown that the third relation is equiva-

lent to the second. Hence all three are equivalent.

Theorem : A dyadic is completely determined when the

^"^""^^
0.a, 0.-b, 0.0,

where a, b, c are any three non-coplanar vectors, are known.

This follows immediately from the fact that a dyadic defines

a linear vector function. If

r = xa, + i/'b-\-ee,

0.T=0'(^xa. + yh + ze) = x0'a, + y0''b + s0'C,

consequently two dyadics and ¥ are equal provided equar

tions (10) hold for three non-coplanar vectors r and three

non-coplanar vectors s.

Theorem : Any linear vector function/ may be represented

by a dyadic to be used as a prefactor and by a dyadic ¥,

which is the conjugate of 0, to be used as a postfactor.

The linear vector function is completely determined when

its values for three non-coplanar vectors (say i, j, k) are

known (page 264). Let

/(i) = a, /(j)=b, /(k) = c.

Then the linear function / is equivalent to the dyadic

givenby
(? = ai + bj + ck,

to be used as a |w»sitfactor ; and to the dyadic ¥

to be used as a nMJfactor.

¥=0o = ia, + j'b + 'kc,

lactor.

/(r) = 0'T = I'0o.



268 VECTOR ANALYSIS

The study of linear vector functions therefore is identical

with the study of dyadics.

Definition : A dyad a b is said to be multiplied by a scalar

a when the antecedent or the consequent is multiplied by

that scalar, or when a Ls distributed in any manner between

the antecedent and the consequent. Ha — a'a"

a(ab) = (aa)b = a(ab) = (a'a)(a"b).

A dyadic is said to be multiplied by the scalar a when

each of its dyads is multiplied by that scalar. The product

is written

a or a.

The dyadic a applied to a vector r either as a prefactor or

as a postfactor yields a vector equal to a times the vector

obtained by applying (P to r— that is

(a0).T = aQ0' r).

Theorem : The combination of vectors in a dyad is distrib-

utive. That is

(a + b)c = ac + bc
/-i -1 \

and a (b + c) = a bXa c.

This follows immediately from the definition of equality of

dyadics (10). For

[(a + b) c] . r = (a + b) c T = a c . r + b c • r = (a c + b c) • r

and

[a(b + c)] •r = a(b + c) .r = ab.r + ao.r = (ab + ac).r.

Hence it follows that a dyad which consists of two factors,

each of which is the sum of a number of vectors, may be

multiplied out according to the law of ordinary algebra

— except that the order of the factors in the dyads must le

maintained.



LINEAR VECTOR FUNCTIONS 269

(a + b + c+---)0 + J»i + n + ---) = al + am + aiH

+ bl + bm + bn+ ... (11)'

+ cl + cm + CI1+ • •

+

The dyad therefore appears as a product of the two vectors of

which it is composed, inasmuch as it obeys the characteris-

tic law of products— the distributive law. This is a justifi-

cation for writing a dyad with the antecedent and conse-

quent in juxtaposition as is customary in the case of products

in ordinary algebra. e»=

The Nonion Form of a Dyadic

lOL] From the three unit vectors i, j, k nine dyads may

be obtained by combining two at a time. These are

ii, ij, ik,

ji, jj, jk, (12)

ki, kj, kk.

If all the antecedents and consequents in a dyadic ^ be ex-

pressed in terms of i, j, k, and if the resulting expression be

simplified by performing the multiplications according to the

distributive law (11)' and if the terms be collected, the dyadic

may be reduced to the sum of nine dyads each of which is

a scalar multiple of one of the nine fundamental dyads given

above.
= a^-yXi -I- 0^12 ij +ai3ik

+ ttji j i -1- a22 j j + «a3 ^k (13)

+ agikiH-ttgakj + a33kk.

This is called the nonion form of <P.

Theorem : The necessary and sufficient condition that two

dyadics and W be equal is that, when expressed in nonion
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form, the scalar coefficients of the corresponding dyads be

equal.

If the coefficients be equal, then obviously

.X=W 'X

for any value of r and the dyadics by (10) must be equal.

Conversely, if the dyadics and W are equal, then by (10)

g • (? • r = s • W • X

for all values of s and r. Let s and r each take on the values

i,j,k. Then (14)

i. </).i = i. f.i, i.0.] = i.W'i, i'0.'k = i.¥.-k

j .(2».i=j. ?p-.i, j.<2).j=j. ?p-.j, j.<?.k = j. ?p-.k

k. <P.i = k. ?f.i, k. <?.i = k. r.j, k. (?>.k = k. 2^.k.

But these quantities are precisely the nine coefficients in the

expansion of the dyadics <P and W. Hence the corresponding

coefficients are equal and the theorem is proved.^ This

analytic statement of the equality of two dyadics can some-

times be used to greater advantage than the more fundamental

definition (10) based upon the conception of the dyadic as

defining a linear vector function.

Theorem : A dyadic may be expressed as the sum of nine

dyads of which the antecedents are any three given non-

coplanar vectors, a, b, o and the consequents any three given

non-coplanar vectors 1, m, n.

Every antecedent may be expressed in terms of a, b, c

;

and every consequent, in terms of 1, m, n. The dyadic may

then be reduced to the form

= a^ al + aj2 am + ^13 an

+ a^^\\ + ^32 cm + ttgg on.
C

1 As a corollary of the theorem it is evident that the nine dyads (12) are in-

dependent. None of them may be expressed linearly in terms of the others.
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This expression of <P is more general than that given in

(13). It reduces to that expression when each set of vectors

a, b, c and 1, m, n coincides with i, j, k.

Theorem : Any dyadic may be reduced to the sum of

three dyads of which either the antecedents or the consequents,

but not both, may be arbitrarily chosen provided they be non-

coplanar.

Let it be required to express iCP aajbhe sum of three dyads

of which a, D, are the aeaseefHgnts. •• Let 1, m, n be any other

three non-coplanar vectors. <P may then be expressed as in

(15). Hence

= a, («!! 1 + ai2 m + a^g n) + b (^21 1 + ^22 m + ajs ^^

+ c («3i 1 + ag2 m + as2 n),

or <? = aA + bB + cC. (16)

In like manner if it be required to express as the sum of

three dyads of which the three non-coplanar vectors 1, m, n are

the consequents
<?l = Ll + Mm + Nn, (16)'

where L = osjj a + a^^ b + a^^ c,

M = ^12 a + a22 ^ + «32 0,

W = aj3 a + ^23 * + *38 0-

The expressions (15), (16), (16)' for are unique. Tw'o equal

dyadics which have th,e same three non-coplanar ante-

cedents, a, b, c, have the same consequents A, B, C — these

however need not be.non-coplanar. And two equal dyadics

which have the same three non-coplanar consequents 1, m, n,

have the same three antecedents.

102.] Definition: The symbolic product formed by the juxta-

position of two vectors a, b without the intervention of a dot

or a cross is called the indeterminate product of the two vectors

a and b.
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The reason for the term indeterminate is this. The two

products a • b and a x b have definite meanings. One is a

certain scalar, the other a certain vector. On the other hand

the product ab is neither vector nor scalar— it is purely

symbolic and acquires a determinate physical meaning only

when used as an operator. The product ab does not obey

the commutative law. It does however obey the distributive

law (11) and the associative law as far as scalar multiplication

is concerned (Art 100).

Tlieorem : The indeterminate product a b of two vectors is

the most general product in which scalar multiplication is

associative.

The most general product conceivable ought to have the

property that when the product is known the two factors are

also known. Certainly no product could be more general.

Inasmuch as scalar multiplication is to be associative, that is

a (ab) = (a a) b = a (a b) = (a' a) (a"b),

it will be impossible to completely determine the vectors a

and b when their product a b is given. Any scalar factor

may be transferred from one vector to the other. Apart from

this possible transference of a scalar factor, the vectors com-

posing the product are known when the product is known. In

other words—
Theorem : If the two indeterminate products a b and a' b'

are equal, the vectors a and a', b and b' must be coUinear and

the product of the lengths of a and b (taking into account the

positive or negative sign according as a and b have respec-

tively equal or opposite directions to a' and b') is equal to the

product of the lengths of a' and b'.

Let a = aj i + ^2 J + «8 ^>

b = Ji i + Ja i + Jg ^
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a' = a/ i + a^ j + a^ k,

V = 6i'i + 62'j + 63'k.

ab = ai6i ii + aj&2 ij + aiSgik

and a'b' = «!'&/ ii + a/J^' ij + a^'Sg' ik

+ <*i' ji + aa'S/ jj + a2*3 Jlf

+ aj'S/ ki + a/J^' tj + ag' 63' kk.

Since ab = a'b' corresponding coefficients are equal. Hence

which shows that the vectors a and a' are collinear.

And hi--h-is = h'-W-h'^

which shows that the vectors b and b' are collinear.

But aj 61 = a/ 6j'.

This shows that the product of the lengths (including sign)

are equal and the theorem is proved.

The proof may be carried out geometrically as follows.

Since ab is equal to a'b'

ab • r = a'b' • r

for all values of r. Let r be perpendicular to b. Then b . r

vanishes and consequently b'«r also vanishes. This is true

for any vector r in the plane perpendicular to b. Hence b and

b' are perpendicular to the same plane and are collinear. In

like manner by using a b as a postfactor a and a' are seen

to be parallel. Also

ab • b = a'b' • b,

which shows that the products of the lengths are the same.

18
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The indeterminate product a b imposes Jive conditions upon

I

the vectors a and b. The directions of a and b are fixed and

likewise the product of their lengths. The scalar product

a • b, being a scalar quantity, imposes only one condition upon

a and b. The vector product a X b, being a vector quantity,

imposes three conditions. The normal to the plane of a and

b is fixed and also the area of the parallelogram of which they

are the side. The nine indeterminate products (12) of i, j, k

into themselves are independent. The nine scalar products

are not independent. Only two of them are different.

i • i=j • j = k • k = l,

and i.j=:j •i = j •k = k'j=k-i = i.k = 0.

The nine vector products are not independent either ; for

ixi = jxj = kxk = 0,

and ixj = —jxi, jxk = — kxj, kxi= — ixk.

The two products a • b and a x b obtained respectively from

the indeterminate product by inserting a dot and a cross be-

tween the factors are functions of the indeterminate product.

That is to say, when ab is given, a • b and a x b are determined.

For these products depend solely upon the directions of a and b

and upon the product of the length of a and b, aU of which

are. known when ab is known. That is

if ab = a'b', a- b = a' • b' and a x b = a' x b'. (17)

It does not hold conversely that if a . b and a x b are known
a b is fixed ; for taken together a • b and a X b impose iipon the

vectors only four conditions, whereas a b imposes five. Hence
a b appears not only as the most general product but as the

most fundamental product. The others are merely functions

of it. Their functional nature is brought out clearly by the

notation of the dot and the cross.
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Definition : A scalar known as the scalar of may be ob-

tained by inserting a dot between the antecedent and conse-

quent of each dyad in a dyadic. This scalar will be denoted

by a subscript S attached to 0. ^

If <^ = aibi + a2b2-|-a3b3 + ..-

<P^=ai.bi + a2.b2 + a8-b3 + ... (18)

In like manner a vector known as the vector of may be

obtained by inserting a cross between the antecedent and con-

sequent of each dyad in 0. This vector will be denoted by

attaching a subscript cross to 0.

<Px = aj X bi + aj X bg + ag x bg -1 (19)

If be expanded in nonion form in terms of i, j, k,

0^ = a^i + 022 + «3S' (20)

<^x = (^23 - «^32) i + («31 - "is) j + («12 " «2l) ^- (21)

Or 0s=i-0-i+i'0'3+'k'0'k, (20)'

<2>^ = (j .
(?• . k - k . (? . j) i + (k • <^ • 1 - i • <? • k) j

+ (i. (p.j_j.<p.i)k. (21)'

In equations (20) and (21) the scalar and vector of are

expressed in terms of the coefficients of when expanded

in the nonion form. Hence if and ¥ are two equal

dyadics, the scalar of is equal to the scalar of ¥ and the

vector of is equal to the vector of ¥.

If 0= ¥^ 0^= ¥s and 0^ = ¥^. (22)

From this it appears that 0^ and 0^ are functions of

uniquely determined when is given. They may sometimes

be obtained more conveniently from (20) and (21) than from

(18) and (19), and sometimes not.

1 A Bubscript dot might be used for the scalar of * if it were snfiScientlj distinct

and free from liability to misinterpretation.
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Products of Dyadics

103.] In giving tlie definitions and proving the theorems

concerning products of dj'adics, the dyad is made the under-

lying principle. "What is true for the dyad is true for the

dyadic in general owing to the fact that dyads and dyadics

obey the distributive law of multiplication.

Definition: The direct product of the dyad ab into the

dwac^ d is written , ,, , ,." (a b) • (c d)

and is by definition equal to the dyad (b • c) aV Ji.

(ab).(cd) = a(b.c)d = b.c aj(^ (23)

That is, the antecedent of the first and the consequent of the

second dyad are taken for the antecedent and consequent

respectively of the product and the whole is multiplied by

the scalar product of the consequent of the first and the

antecedent of the second.

Thus the two vectors which stand together in the product

(ab).(cd)

are multiplied as they stand. The other two are left to form

a new dyad. The direct product of two dyadics may be

defined as the formal expansion (according to the distributive

law) of the product into a sum of products of dyads. Thus
'P

<P = (ai b 1 + aj ba + Eg bg + . .

.)

and ?r=(Cidi +C2d2 +C3d3 + ...)

0. ?r=(aibi +a2b2 +a3bs + -..) •

(cidi +C2d2 +e3d3 + • • •)

=:a2bj'Cjdj^ +aibj»C2d2 -l-aj^bi'Cgdj-l---.

+ a2b2.Cidi -|-a2b2.02d2 +a2b2'C8d3 + ••• (23)'

+ a3b3.Cidi + a3b3.C2d2 + a3b3.C3d3 H

+
1 The parentheses may be omitted in each of these three expressiona.
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. ?P" = bj • Cj a^dj + b^ • Cj a^dg + b^'Og a^dj + ••

+ bj • Cj aj dj
<Jf

bj • C2 aj dj + bg • Cg aj dg + • •

+ bg • Ci ag dj + bg . C2 ag da + bg • Cg aj dg + • • •

+ (23)"

The product of two dyadics and SP" is a dyadic • W.

Theorem: The product 0' ¥oi two dyadics and SP'when

regarded as an operator to be used as a prefactor is equiva-

lent to the operator ¥ followed by the operator 0.

Let S^0'¥.

To show J2.r= (p. (f .r),

or (<P . ?F) . r = (? . ( r . r). (24)

Let a b be any dyad of and c d any dyad of ¥.

(a b • c d) • r = b.c (a d • r) = (b • c) (d • r) a,

ab . (^c d • r) = a b • c (d • r) = (b • c) (d • r) a.

Hence (a b • c d) • r = a b • (c d • r).

The theorem is true for dyads. Consequently by Tirtue of

the distributive law it holds true for dyadics in general.

If r denote the position vector drawn from an assumed origin

to a point F in space, r' = ¥ -t will be the position vector of

another point P', and r" = •(¥•!) will be the position

vector of a third point P". That is to say, ¥ defines a trans-

formation of space such that the points P go over into the

points i". defines a transformation of space such that the

points P' go over into the points P". Hence ¥ followed by

carries P into P". The single operation • ¥ also carries

PintoP".

Theorem: Direct multiplication of dyadics obeys the dis-

tributive law. That is



278 VECTOR ANALYSIS

. ( f + ¥')= 0' W + 0' JT'

and (0'+ 0).¥^0'-¥+ .¥. (25)

Hence in general the product

{0+ 0'+ 0" +...).(¥+ ¥'+ ¥"+...)

may be expanded formally according to the distributive law.

Theorem : The product of three dyadics 0, ¥, S is associa-

tive. Thatis
(^0.W).S=0.(¥.S:f (26)

and consequently either product may be written without

parentheses, as
. w . S. (26)'

The proof consists in the demonstration of the theorem for

three dyads ab, cd, ef taken respectively from the three

dyadics 0, ¥, S.

(ab-cd) -ef = (b«c) ad« ef = (b»c) (d«e) af,

ab • (c d • e f) = (d • e) ab • c f = (d • e) (b • e) a f.

The proof may also be given by considering 0, ¥, and Q
as operators

{((p. ?r).i2|.r = (<?. ?P").(^.r).

Let S.T = i'

{(i0'¥).S}.x = (0. ¥).i'=0.(¥.r').

Let ¥.t' = i",

\(^0'¥).SI .r=0'v" = x"'.

Again {0 >{¥. Sf)} .r = 0.1{¥. Q).t'\.

(?r.i2).r= ¥'{Q.t) = r.r' = r".

{0.{¥. S)}.i= 0.1¥'t''\ = 0.i" = v"'

Hence {(0 • ¥)• S\ .x = {0 . (¥^ S)l .t

for all values of r. Consequently

(0.¥).S = 0.(¥.S).
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The theorem may be extended by mathematical induction

to the case of any number of dyadics. The direct product

of any number of dyadics is associative. Parentheses may
be inserted or omitted at pleasure without altering the result.

It was shown above (24) that

(0.¥^'T=0.(¥.i)=0. ¥.T. (24)'

Hence the product of two dyadics and a vector is associative.

The theorem is true in case the vector precedes the dyadics

and also when the number of dyadics is greater than two.

But the theorem is untrue when the vector occurs between

the dyadics. The product of a dyadic, a vector, and another
|

dyadic is not associative.

(0.T).¥^ 0.(T'¥). (27)

Let a b be a dyad of 0, and c d a dyad of ¥.

(ab • r) • c d = b • r (a • cd) = (b • r) (a • c) d,

ab • (r • c d) = ab • d (r • c) = b • d (r • c)

a

Hence (a b • r) • c d ^ a b • (r • e d).

The results of this article may be summed up as follows

:

Theorem: The direct product of any number of dyadics

or of any number of dyadics with a vector factor at either

end or at both ends obeys the distributive and associative

laws of multiplication — parentheses may be inserted or I

omitted at pleasure. But the direct product of any number

of dyadics with a vector factor at some other position than at

either end is not associative — parentheses are necessary to

give the expression a definite meaniag.

Later it wUl be seen that by making use of the conjugate

dyadics a vector factor which occurs between other dyadics

may be placed at the end and hence the product may be

made to assume a form in which it is associative.
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104.] Definition: The skew products of a dyad ab into

a vector r and of a vector r into a dyad ab are defined

respectively by the equations

(ab) X r = a(b X r),

rx(ab) = (rxa)b. ^^^^

The skew product of a dyad and a vector at either end is a

dyad. The obvious extension to dyadics is

<? X r = (ai b 1 + aj bg + ag bg + . .
.) X r

= aibi X r + agbg xr + agbg x r + ...

rx (? = rx(aibi+a2b2 + agb34----) (28)'

= r X a^bi + r X agbg + r X agbg + ...

Theorem: The direct product of any number of dyadics

multiplied at either end or at both ends by a vector whether
the multiplication be performed with a cross or a dot is

associative. But in case the vector occurs at any other

position than the end the product is not associative. That is,

(r X (/>) . r = r X ((? • f) = r X > W,

(#. W)XT=0.(^WX-I) = 0.WXT,
(r X <P).s = r X ((?.s)=rx (P.s, (29)

r
. ((2> X s) = (r . (?>) X s = r • (Z> X s,

r X (<? X s) = (r X <?>) X s = r X (^> X s,

but ^^.(r X 0):^ (^¥.r-)xi.

Furthermore the expressions

s . r X <? and (? x r • s ^

can have no other meaning than

s . r X <2> = s . (r X 0),

0xi'S = (0xt)'a,
^^^^^



LINEAR VECTOR FUNCTIONS 281

since the product of a dyadic with a cross into a scalar s • r

is meaningless. Moreover since the dot and the cross may

be interchanged in the scalar triple product of three vectors

it appears that

s . r X (P = (s X r) . <P,

xi'6= 0-(t xa), (31)

and 0'(tx W) = (i0XT)'¥.

The parentheses in these expressions cannot be omitted

without incurring ambiguity.

0-(TXa) ?t (<2>.r) X s,

(s X r) . <P 5t s X (r • <P), (31)'

((P.r) X ¥:^ 0x(r' W).

The formal skew product of two dyads a b and c d would be

(ab) X (o d) = a (b X c) d.

In this expression three vectors a, b X c, d are placed side

by side with no sign of multiplication uniting them. Such

an expression
rst (32)

is called a triad; and a sum of such expressions, a triadic.

The theory of triadics is intimately connected with the theory

of linear dyadic functions of a vector, just as the theory of

dyadics is connected with the theory of linear vector functions

of a vector. In a similar manner by going a step higher

tetrads and tetradics may be formed, and finally polyads and

polyadics. But the theory of these higher combinations of

vectors will not be taken up in this book. The dyadic

furnishes about as great a generality as is ever called for in

practical applications of vector methods.
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Degrees of Nullity of Dyadics

105.] It was shown (Art. 101) that a dyadic could always

be reduced to a sum of three terms at most, and this reduction

can be accomplished in only one way when the antecedents

or the consequents are specified. In particular cases it may

be possible to reduce the dyadic further to a sum of two

terms or to a single term or to zero. Thus let

<P = al + bm + cn.

If 1, m, n are coplanar one of the three may be expressed

in terms of the other two as

l = xra. + ya.

Then ^ = aa;iii + ayn + bm + en,

= (&x + b)m+ (ay + c)n.

The dyadic has been reduced to two terms. If 1, m, n were

all collinear the dyadic would reduce to a single term and if

they aU vanished the dyadic would vanish.

Theorem : If a dyadic be expressed as the sum of three

terms
<? = al + bm + en

of which the antecedents a, b, c are known to be non-coplanar,

then the dyadic may be reduced to the sum of two dyads

wh^n and only when the consequents are coplanar.

The proof of "the first part of the theorem has just been

given. To prove the second part suppose that the dyadic

could be reduced to a sum of two terms

(Z>=:dp + eq

and that the consequents 1, m, n of <? were non-coplanar.

This supposition leads to a contradiction. For let 1', m', n'

be the system reciprocal to 1, m, n. That is,

mxn , nxl , Ixm
I' =

[Imn]' [Imn]' [Imn]
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The vectors 1', m', n' exist and are non-coplanar because

1, m, & have been assumed to be non-coplanar. Any vector r

may be expressed in terms of them as

T = xV + ym' + gn,'

(? • r = (a 1 + b m + c n) • (re 1' + y m' + « n').

But 1 - 1' = m . m' = n • n' = 1,

and 1 • m' = 1' • m = m • n' = m' • n = n • 1' = n' • 1 = 0.

Hence <P»r = a;a + yb + sc.

By giving to r a suitable value the vector • r'may be made

equal to any vector in space.

But <P • r = (dp + e q) • r = d (p • r) + e (q • r).

This shows that • r must be coplanar with d and e. Hence

• r can take on only those vector values which lie in the

plane of d and e. Thus the assumption that 1, m, n are non-

coplanar leads to a contradiction. Hence 1, m, n must be

coplanar and the theorem is proved.

Theorem : If a dyadic be expressed as the sum of three

terms
= &1 + bm + en,

of which the antecedents a, b, c are known to be non-coplanar,

the dyadic can be reduced to a single dyad when and only

when the consequents 1, m, n are collinear.

The proof of the first part was given above. To prove

the second part suppose could be expressed as

<P = dp.

Let ?r=<^xp = dp xp = dO = 0,

S'"=al xp-f-bmxp-f-cnxp.



284 VECTOR ANALYSIS

From the second equation it is evident that ¥ used as a

postfactor for any vector

T = X a,' + y h' + ze',

where a', 1)', c' is the reciprocal system to a, b, c gives

r . ¥= ajlxp + ymxp + znxp.

From the first expression

1-0 = 0.

Hence aslxp+ymxp + ^nxp

must be zero for every value of r, that is, for every value of se,

y, z. Hence

lxp = 0, inxp = 0, nxp = 0.

Hence 1, m, and n are all parallel to p and the theorem has

been demonstrated.

If the three consequents 1, m, n had been known to be non-

coplanar instead of the three antecedents, the statement of

the theorems would have to be altered by interchanging the

words antecedent and consequent throughout. There is a fur-

ther theorem dealing with the case in which both antecedents

and consequents of are coplanar. Then is reducible to

the sum of two dyads,

106.] Definition: A dyadic which cannot be reduced to

the sum of fewer than three dyads is said to be complete. A
dyadic which may be reduced to the sum of two dyads, but

cannot be reduced to a single dyad is said to be planar. In

case the plane of the antecedents and the plane of the con-

sequents coincide when the dyadic is expressed as the sum of

two dyads, the dyadic is said to be uniplanar. A dyadic

which may be reduced to a single dyad is said to be linear.

In case the antecedent and consequent of that dyad are col-



LINEAR VECTOR FUNCTIONS 285

linear, the dyadic is said to be unilinear. If a dyadic may be

so expressed that all of its terms vanish the dyadic is said to

be zero. In this case the nine coefficients of the dyadic as

expressed in nonion form must vanish.

The properties of complete, planar, uniplanar, linear, and
unilinear dyadics when regarded as operators are as follows.

Let
s— -x and t = r • 0.

If ¥ is complete s and t may he made to take on any desired

value by giving r a suitable value.

As <P is complete 1, m, u are non-coplanar and hence have a

reciprocal system 1', m', n'.

s= • (xV + ym' + zn') =!ca. + yh + ze.

In like manner a, b, c possess a system of reciprocals a', b', c'.

t = (x&' + y'b' + zc') • = xl + ym + zn.

A complete dyadic applied to a vector r cannot give zero

imless the vector r itself is zero.

If is planar the vector a may take on any value in the plane

of the antecedents and t any value in the plane of the consequents

of ; but no values out of those planes. The dyadic when

used as a prefactor reduces every vector r in space to a vector

in the plane of the antecedents. In particular any vector r

perpendicular to the plane of the consequents of is reduced

to zero. The dyadic used as a postfactor reduces every

vector r in space to a vector in the plane of the consequents

of 0. In particular a vector perpendicular to the plane of

the antecedents of is reduced to zero. In case the dyadic

is uniplanar the same statements hold.

If is linear the vector s may take on any value collinear

with the antecedent of and t any value collinear with the con-
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sequent of ^ ; hut no other values. The dyadic used as a

prefactor reduces any vector r to the line of the antecedent

of 0. In particular any vectors perpendicular to the con-

sequent of <P are reduced to zero. The dyadic used as a

postfactor reduces any vector r to the line of the consequent

of 0. In particular any vectors perpendicular to the ante-

cedent of (P are thus reduced to zero.

If is a zero dyadic the vectors s and t are loth zero no

matter what the value of r may he.

Definition : A planar dyadic is said to possess one degree of

nullity. A linear dyadic is said to possess two degrees of

nullity. A zero dyadic is said to possess three degrees of nul-

lity or complete nullity.

107.] Theorem : The direct product of two complete dyadics

is complete; of a complete dyadic and a planar dyadic,

planar ; of a complete dyadic and a linear dyadic, linear.

Theorem: The product of two planar dyadics is planar

except when the plane of the consequent of the first dyadic

in the product is perpendicular to the plane of the antece-

dent of the second dyadic. In this case the product reduces

to a linear dyadic— and only in this case.

Let <? = aib;^ + ajba,

?F = Cidi + C2d2,

The vector a = ¥ • r takes on all values in the plane of Cj

and Cj

The vector s' = <? • s takes on the values

b' = (2> - s = a; (b^ . Cj) ai + y (bi . c^) a^

+ x (bj .Ci) aj + y (ba • cj^ a^,

s' =
I « (bj . Ci) + y (bi . C2)} &i + {x (ba . Ci) + y (ba • Cj)} a^.
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Let s' = aj'a^ + y'aj,

where x' = x (bj.- c^) + «/ O^i •
"a)'

and y' ^x (bj ' e^) + y (bj • c^).

These equations may always be solved for x and y when

any desired values x' and y' are given— that is, when s' has

any desired value in the plane of a^ and a,^— unless the

determinant

bi . Ci bi . 02 ^ ^
bj • Cj bj . C2

But by (25), Chap. II., this is merely the product

(bi X bj) . (ci X C2) ^ 0.

The vector b^ x h^ is perpendicular to the plane of the con-

sequents of ; and c^ X Cj, to the plane of the antecedents of

¥. Their scalar product vanishes when and only when the

vectors are perpendicular— that is, when the planes are per-

pendicular. Consequently s' may take on any value in the

plane of aj and a,^ and (? • JF is therefore a planar dyadic

unless the planes of bj^ and bg, c^ and c^ are perpendicular.

If however b^ and \, Cj and c^ are perpendicular s' can take

on only values in a certain line of the plane of aj and a,^, and

hence > ¥ is linear. The theorem is therefore proved.

Theorem : The product of two linear dyadics is linear

except when the consequent of the first factor is perpen-

dicular to the antecedent of the second. In this case the

product is zero— and only in this case.

Theorem : The product of a planar dyadic into a linear is

linear except when the plane of the consequents of the

planar dyadic is perpendicular to the antecedent of the linear

dyadic. In this case the product is zero— and only in this

case.

Theorem: The product of a linear dyadic into a planar

dyadic is linear except when the consequent of the linear
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dyadic is perpendicular to the plane of the antecedents of

the planar dyadic. In this case the product is zero— and

only in this case.

It is immediately evident that in the cases mentioned the

products do reduce to zero. It is not quite so apparent that

they can reduce to zero in only those cases. The proofs are

similar to the one given above in the case of two planar

dyadics. They are left to the reader. The proof of the

first theorem stated, page 286, is also left to the reader.

The Idemfactor ;^ Beeiprocals and Conjugates of Dyadics

108.] Definition : If a dyadic applied as a prefactor or as

a postfactor to any vector always yields that vector the

dyadic is said to be an idemfactor. That is

if ' T = r for all values of r,

or if r • <?* = r for all values of r,

then is an idemfactor. The capital I is used as the sym-

bol for an idemfactor. The idemfactor is a complete dyadic.

For there can be no direction in which I • r vanishes.

Theorem : When expressed in nonion form the idemfactor is

I = ii + jj + kk. (33)

Hence all idemfactors are equal.

To prove that the idemfactor takes the form (33) it is

merely necessary to apply the idemfactor I to the vectors

i, j, k respectively. Let

I = a^i ii + ai2 ^J + '"is i^

+ a2iJi + «22JJ + «23JJt

+ a3iki + ttjj kj + ajjkk.

1 In the theory of dyadics the idemfactor I plays a r61e analogous to unity in

ordinary algebra. The notation is intended to suggest this analogy.
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I.i = aiii + ajij + aj^ k.

If I.i = i,

«!! = 1 and ftji = *3i = 0.

In like manner it may be shown that aU the coefficients

vanish except a^j, a^^, a^^ all of which are unity. Hence

I = ii+jj + kk. (33)

Theorem : The direct product of any dyadic and the idem-

factor is that dyadic. That is,

0-1 — and 1'0 = 0.

For (<2>.I) •! = (?. (I. r) =<P.r,

no matter what the value of r may be. Hence, page 266,

0.1 = 0.

In like manner it may be shown that 1.0 = 0.

Theorem : If a', b', c' and a, b, c be two reciprocal systems

of vectors the expressions

I = aa' + l)b' + co', (34)

I = a'a + b'b + c'c

are idemfactors.

For by (30) and (31) Chap. II.,

r = r«aa' + r.bb' + r«cc',

and r = r«a'a + r«b'b + r»c'c.

Hence the expressions must be idemfactors by definition.

Theorem : Conversely if the expression

= &\ + bm + on

is ^n idemfactor 1, m, n must be the reciprocal system of

a,^, c.

10
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In the first place since is the idemfactor, it is a complete

dyadic. Hence the antecedents a, b, c are non-coplanar and

possess a set of reciprocals a', b', c'. Let

r = asa' + yb' + zc'.

By hypothesis r . (/> = r.

Then r • (P = a;l + ym + zn = ica' + yb' + s</

for all values of r, that is, for aU values of x, y, z. Hence the

corresponding coefficients must be equal. That is,

1 = a', m = b', n = c'.

Theorem : If and W be any two dyadics, and if the product

' ¥ is equal to the idemfactor;^ then the product W • <P,

when the factors are taken in the reversed order, is also

equal to the idemfactor.

Let 'W = l.

To show W .0 = 1.

T.(0- ¥)=T'1 = T,

T'(0 ' T) .0 = 1 .0,

T. (0 .¥).0=(t .0^.(W .0) = ! .0.

This relation holds for aU values of r. As is complete r •

must take on aU desired values. Hence by definition

¥.0 = 1.

If the product of two dyadics is an idemfactor, that product

may be taken in either order.

109.] Definition: When two dyadics are so related that

their product is equal to the idemfactor, they are said to be

1 This necessitates both the dyadics * and T to be complete. For the product
of two incomplete dyadics is incomplete and hence could not be equal to the

idemfactor.
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reciprocals?^ The notation used for reciprocals in ordinary

algebra is employed to denote reciprocal dyadics. That is,

if (P-f = I, <P = ?P--1 = 1 and f = (/>-! = I- (35)

Theorem: Keciprocals of the same or equal dyadics are

equal.

Let and W be two given equal dyadics, 0~^ and W~^

their reciprocals as defined above. By hypothesis

0=¥,
0.0-^ = I,

and W'W--^ = l.

To show 0-^ = W-\

0.0-^ = 1= W' W-\

As 0=W, 0,0-^=0.W-\
<p-l

. . 0-^ =0-^.0. W-\

0-^.0 = I,

1.0-^ = 0-^ = 1. r-1 = w-\

Hence 0'^ = W-\

The reciprocal of is the dyadic whose antecedents are the

reciprocal system to the consequents of and whose conse-

quents are the reciprocal system to the antecedents of 0.

If a complete dyadic be written in the form

(? = al + bm + en,

its reciprocal is 0'^ = 1' a' + m' b' + n' c'. (36)

For (al + bm + cn) • (ra' + n' b' + n' c') = a a' + bb' + cc'.

Theorem: If the direct products of a complete dyadic

into two dyadics W and 8 are equal as dyadics then W and 8

I An incomplete dyadic has no (finite) reciprocal.
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are equal. If the product of a dyadic into two vectors

r and s (whether the multiplication be performed with a dot

or a cross) are equal, then the vectors r and s are equal.

That is,

if 0.W=O'S, then?r=-0,

and if (P . r = (? • s, then r = s, (37)

and if <^xr=<Pxs, then r = s.

This may be seen by multiplying each of the equations

through by the reciprocal of 0,

0-1. 0.T = T= 0-^' 0'S = S,

(p-l .0XT = IXT=<P~^'(1>XS = IXS.

To reduce the last equation proceed as follows. Let t be

any vector,

t'Ixr = t«Ixs,

t . I = t.

Hence t x r = t x s.

As t is any vector, r is equal to s.

Equations (37) give what is equivalent to the law of can-

celation for complete dyadics. Complete dyadics may be

canceled from either end of an expression just as if they

were scalar quantities. The cancelation of an incomplete

dyadic is not admissible. It corresponds to the cancelation

of a zero factor in ordinary algebra.

110.] Theorem: The reciprocal of the product of any

number of dyadics is equal to the product of the reciprocals

taken in the opposite order.

It will be suificient to give the proof for the case in which

the product consists of two dyadics. To show
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0. W' jT-i .
<p-i = (P

.
( ?r . ?r-i) .0-^ = 0. 0-^=zi.

Hence (<P . f) . ( ?F-i .
(«>-i) = I.

Hence (? • W and ?r~i • 0~^ must be reciprocals. Tliat is,

The proof for any number of dyadics may be given in the

same manner or obtained by mathematical induction.

Definition : The products of a dyadic 0, taken any number

of times, by itself are called powers of and are denoted in

the customary manner.

0.0=0\
. , = . 0^ = 0\

and so forth.

Theorem : The reciprocal of a power of is the power of

the reciprocal of 0.

(0«)-i = {0-^y = 0-". (37)

The proof follows immediately as a corollary of the preced-

ing theorem. The symbol <P~" may be interpreted as the

jith power of the reciprocal of or as the reciprocal of

the rath power of 0.

If be interpreted as an operator determining a trans-

formation of space, the positive powers of correspond to

repetitions of the transformation. The negative powers of

correspond to the inverse transformations. The idemfactor

corresponds to the identical transformation—that is, no trans-

formation at all. The fractional and irrational powers of

will not be defined. They are seldom used and are not

single-valued. For instance the idemfactor I has the two

square roots ± I. But in addition to these it has a doubly

infinite system of square roots of the form

<p = -ii + jj-f-kk.
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Geometrically the transformation

t' = (P'T

is a reflection of space in the j k-plane. This transformation

replaces each figure by a symmetrical figure, symmetrically

situated upon the opposite side of the j k-plane. The trans-

formation is sometimes called perversion. The idemfactor

has also a doubly infinite system of square roots of the form

?p- = ii-jj-kk.

Geometrically the transformation

r'= ¥'T

is a reflection in the i-axis. This transformation replaces each

figure by its equal rotated about the i-axis through an angle

of 180°. The idemfactor thus possesses not only two square

roots ; but in addition two doubly infinite systems of square

roots ; and it will be seen (Art. 129) that these are by no

means all.

111. J The conjugate of a dyadic has been defined (Art. 99)

as the dyadic obtained by interchanging the antecedents and

consequents of a given dyadic and the notation of a subscript

C has been employed. The equation

T .0 = 0^.1 (9)

has been demonstrated. The following theorems concerning

conjugates are useful.

Theorem : The conjugate of the sum or difference of two

dyadics is equal to the sum or difference of the conjugates,

{0± ¥)a=0c± ^,0-

Theorem : The conjugate of a product of dyadics is equal

to the product of the conjugates taken in the opposite order.
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It will be sufficient to demonstrate the theorem in case

the product contains two factors. To show

{^.¥)a=¥a'0o, (40)

{0 . W)a- r = T '(_(!>-¥) = {t . 0) . W,

I .0 = 0C.T,

(t.0^ .W^¥o'(i-0)=¥c'0o-i.

Hence (0 - ¥)c=^o' ^c-

Theorem : The conjugate of the power of a dyadic is the

power of the conjugate of the dyadic.

{0-^c=Q0cr = 0'h. (41)

This is a corollary of the foregoing theorem. The expression

0"c ™3'y be interpreted in either of two equal ways.

Theorem : The conjugate of the reciprocal of a dyadic is

equal to the reciprocal of the conjugate of the dyadic.

(^0-i-y^=(^0^)-i^0-\
(42)

For {0-^)c.0^ = {0.0-i)„=l^^l.

The idemfactor is its own conjugate as may be seen from

the nonion form.

1 = 11 + j j + kk

{0,)-^.0, = l.

Hence i^cT^ '^c={ ^^')c ' ^o-

Hence (<?>^)-i = (<?>-i)c.

The expression 0(j~^ may therefore be interpreted in either

of two equivalent ways— as the reciprocal of the conjugate

or as the conjugate of the reciprocal.

Definition: If a dyadic is equal to its conjugate, it is said

to be self-conjugate. If it is equal to the negative of its con-
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jugate, it is said to be aniiself-conjugate. For self-conjuga,te

dyadics.

T .0 = -T, = 00-

For anti-self-conjugate dyadics

T .0 = -0 -T, = -0o.

Theorem : Any dyadic may be divided in one and only one

way into two parts of which one is self-conjugate and the

other anti-self-conjugate.

For 0=l(0+0c) + li^-^c)- (43)

But (0 + 0c-)^ = 0^ + 0^c=<l>c+ <^,

and ((? - 0o)c=^c- ^cc =0c-^-

Hence the part \(_0 + 0^0) is self-conjugate; and the part

^{0 — 0^, anti-self-conjugate. Thus the division has been

accomplished in one way. Let

1 ((? + 0>) = 0>

and ^(^0-0^-) = 0n,

0=z0' + 0".

Suppose it were possible to decompose in another way
into a self-conjugate and an anti-self-conjugate part. Let

then
= C0' + S-) + (<P"-J2).

Where ((^' + S) = ((?' + J2)„ = 0', + Q„ = 0' + Qa-

Hence ii (0' + S) is self-conjugate, S is self-conjugate.

- (0" -S) = <i0"
- Q-), = 0\ -Q^ = -0<>- Q,,

Hence if (^0" — S) is anti-self-conjugate Q is anti-self-

conjugate. •

Q = Q^, S = - Sg.
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Any dyadic which is both self-conjugate and anti-self-conju-

gate is equal to its negative and consequently vanishes.

Hence Q is zero and the division of into two parts is

unique.

Anti-self-conjugate Dyadics. The Vector Product

112.] In case is any dyadic the expression

gives the anti-self-conjugate part of #. If should be en-

tirely anti-self-conjugate is equal to 0". Let therefore 0"

be any anti-self-conjugate dyadic,

Suppose <? = al + bm-|-cn,

(P — ^<, = al — la-t-bm — mb-hcn — nc,

(^".r = al«r — la«r + bm-r — mbT-}-cii»r — nc«r.

But a 1 • r — 1 a • r = — (a X 1) X r,

bm-r — inb»r = — (b x m)x r,

c n • r — n e • r = — (c X n) X r.

Hence <Z'".r = — |(axl-Fbxin-|-cxn)xr.

But by definition <?x = axl-|-bxm-|-cxn.

Hence 0" -x = -\ 0^xj:,

X'0" = 0"o'X = -0" 'X = \0^XX = -\t X 0^.

The results may be stated in a theorem as follows.

Theorem : The direct product of any anti-self-conjugate

dyadic and the vector r is equal to the vector product of

minus one half the vector of that dyadic and the vector r.
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Theorem : Any anti-self-conjugate dyadic 0" possesses one

degree of nullity. It is a uniplanar dyadic the plane of

whose consequents and antecedents is perpendicular to (P^",

the vector of 0.

This theorem follows as a corollary from equations (44).

Theorem : Any dyadic may be broken up into two parts

of which one is self-conjugate and the other equivalent to

minus one half the vector of used in cross multiplication.

0.1 = 0'

.

1-^0^ X r,

or symbolically 0. = 0'. -^0^x. (45)

113.] Any vector c used in vector multiplication defines a

linear vector function. For

cx(r-)-s) = cxr-fcxs.

Hence it must be possible to represent the operator c x as a

dyadic. This dyadic wiU be uniplanar with plane of its

antecedents and consequents perpendicular to c, so that it

will reduce all vectors parallel to c to zero. The dyadic may
be found as follows

cxr = I«cxr = lxc«r = (Ixc)'r.

By (31) I. (cxl) = (lxc).l,

(I x c) . r =
I
(I X c) . 1} . r = {I . (c X I)} . r

= I • (c X I) • r = (c X I) • r.

Hence c x r = (I x c) • r = (e x I) • r,

and r X c = r . (I X c) = r . (c X I), (46)

This may be stated in words.
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Theorem : The vector c used in vector multiplication with

a vector r is equal to the dyadic I x c or c x I used in direct

multiplication with r. If c precedes r the dyadics are to be

used as prefactors ; if c follows r, as postfactors. The dyadics

I X c and c X I are anti-self-conjugate.

In case the vector c is a unit vector the application of the

operator c X to any vector r in a plane perpendicular to c is

equivalent to turning r through a positive right angle about

the axis c. The dyadic c X I or I x c where c is a unit vector

therefore turns any vector r perpendicular to c through a

right angle about the line c as an axis. If r were a vector

lying out of a plane perpendicular to c the effect of the dyadic

I X c or c X I would be to annihilate that component of r which

is parallel to o and turn that component of r which is perpen-

dicular to c through a right angle about c as axis.

If the dyadic be applied twice the vectors perpendicular to

r are rotated through two right angles. They are reversed in

direction. If it be applied three times they are turned through

three right angles. Applying the operator I x c or c X I four

times brings a vector perpendicular to c back to its original

position. The powers of the dyadic are therefore

(I X e)2 = (c X 1)2 = - (I - cc),

(I X c)8 = (c X 1)3 = - I X c = - c X I,

(I X c)* = (c X I)* = I - c c,

(I X c)^ = (c X I)^ = I X c = c X I.

(47)

It thus appears that the dyadic I X c or c x I obeys the same

law as far as its powers are concerned as the scalar imaginary

V — 1 in algebra.

The dyadic Ixc or cxiisa quadrantal versor only for

vectors perpendicular to c. For vectors parallel to c it acts

as an annihilator. To avoid this effect and obtain a true
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quadrantal versor for all vectors r in space it is merely neces-

sary to add the dyad c c to the dyadic I X c or c X I.

If X = Ixc + cc = cxI + cc,

X^=;:^^rX^ (48)

X* = I,

X« = X.

The dyadic X therefore appears as a fourth root of the

idemfactor. The quadrantal versor X is analogous to the

imaginary V — 1 of a scalar algebra. The dyadic X is com-

plete and consists of two parts of which I x c is anti-self-

conjugate ; and c c, self-conjugate.

114.] If i, j, k are three perpendicular unit vectors

1x1 = 1x1 = kj— jk,

Ixj=j xl = ik-ki, (49)

Ixk=k xl=jl— Ij,

as may be seen by multiplying the idemfactor

I = il + jj + kk

into i, j, and k successively. These expressions represent

quadrantal versors about the axis 1, j, k respectively combined

with annihilators along those axes. They are equivalent,

when used in direct multiplication, to i X, jx, k X respectively,

(IXk)2=(kxI)2 = -(ll + jj),

(ixk)3=(kxi)3=-ai-ij),

(lxk)*=(kxl)* = ll+.jj.

The expression (I x k)* is an idemfactor for the plane of 1 and

j, but an annihilator for the direction k. In a similar man-

ner the dyad k k is an idemfactor for the direction k, but an
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annihilator for the plane perpendicular to k. These partial

idemfactors are frequently useful.

If a, b, c are any three vectors and a', b', c' the reciprocal

system,
aa' + bb'

used as a prefactor is an idemfactor for all vectors in the

plane of a and b, but an annihilator for vectors in the direc-

tion c. Used as a postfactor it is an idemfactor for aU vectors,

in the plane of a' and b', but an annihilator for vectors in the

direction c'. In like manner the expression

used as a prefactor is an idemfactor for vectors in the direction

c, but for vectors in the plane of a and b it is an annihilator.

Used as a postfactor it is an idemfactor for vectors in the

direction c', but an annihilator for vectors in the plane of a'

and b', that is, for vectors perpendicular of c.

If a and b are any two vectors

(a X b) X I = I X (a X b) = b a — a b. (50)
For

{(a xb)xl}»r = (axb) xr =baT — ab.r = (ba — ab)T.

The vector a x b in cross multiplication is therefore equal to

the dyadic (b a — a b) in direct multiplication. If the vector

is used as a prefactor the dyadic must be so used.

(a xb) xr = (ba — ab)»r,

r X (a X b) = r • (b a — ab). (51)

This is a symmetrical and easy form in which to remember

the formula for expanding a triple vector product.
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Beduetion of Dyadies to Normal Form

115.] Let be any complete dyadic and let r be a unit

vector. Then the vector r'

r'= (2>.r

is a linear function of r. When r takes on all values consis-

tent with its being a unit vector— that is, when the terminus

of r describes the surface of a unit sphere,— the vector r'

varies continuously and its terminus describes a surface. This

surface is closed. It is fact an ellipsoid.^

Theorem : It is always possible to reduce a complete dyadic

to a sum of three terms of which the antecedents among

themselves and the consequents among themselves are mutu-

ally perpendicular. This is called the normalform of 0.

= ai'i + 6j'j + ck'k.

To demonstrate the theorem consider the surface described

by
l' = 0'T.

As this is a closed surface there must be some direction of r

which makes r' a maximum or at any rate gives r' as great

a value as it is possible for r' to take on. Let this direction

of r be called i, and let the corresponding direction of r'

—

the direction in which r' takes on a value at least as great as

any— be called a. Consider next all the values of r which

lie in a plane perpendicular to i. The corresponding values

of r' lie in a plane owing to a fact that (/> • r is a linear vector

1 This may be proved as follows

:

r' = *.r r = *-i •r'= r.*<: -1.

Hence r.r=l= r'. (*«-!•* -!) r' = r' . *.p'.

By expressingV in nonion form, the equation r' •Y • r'= 1 is seen to be ofthe second

degree. Hence i' describes a qnadric surface. The only closed qoadric surface

is the ellipsoid.
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function. Of these values of r' one must be at least as great

as any other. Call this b and let the corresponding direction

of r be called j. Finally choose k perpendicular to i and j

upon the positive side of plane of i and j. Let c be the

value of r' which corresponds to r = k. Since the dyadic

changes i, j, k into a, b, c it may be expressed in the form

<P = ai + bj + ck.

It remains to show that the vectors a, b, c as determined

above are mutually perpendicular.

r' = (ai +bj + ck).r,

dx' = (9.i + bj + ck) 'dr,

I'-dr' = i'-&i'di +t' -hi'dr +i'-ck-dr.

When r is parallel to i, r' is a maximum and hence must be

perpendicular to di'. Since r is a unit vector di is always

perpendicular to r. Hence when r is parallel to i

r' • b j • dr + t' 'C i.-dT = 0.

If further di is perpendicular to j, r'«c vanishes, and if

di is perpendicular to k, r'«b vanishes. Hence when r is

parallel to i, r' is perpendicular to both b and c. But when
r is parallel to i, r' is parallel to a. Hence a is perpendicular

to b and c. Consider next the plane of j and k and the

plane of b and c. Let r be any vector in the plane of j and k.

r' = (bj + ck)T,

dr' = (bj + ck) • dr,

i' • dt' = r' 'h j'dr + r'«c k«dr.

When r takes the value j, r' is a maximum in this plane and

hence is perpendicular to dr'. Since r is a unit vector it is
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perpendicular to dr. Hence when r is parallel to j, dt

is perpendicular to j, and

i' .di' = = t''C Is. -dr.

Hence r' • c is zero. But when r is parallel to j, r' takes the

value b. Consequently b is perpendicular to c.

It has therefore been shown that a is perpendicular to b and

c, and that b is perpendicular to c. Consequently the three

antecedents of are mutually perpendicular. They may be

denoted by 1', j ', k'. Then the dyadic takes the form

= ai'i +hj'j +ck'k, (52)

where a, h, c are scalar constants positive or negative.

116.] Theorem: The complete dyadic may always be

reduced to a sum of three dyads whose antecedents and

whose consequents form a right-handed rectangular system

of unit vectors and whose scalar coefficients are either aH

positive or all negative.

<P=± (ai'i + 6j'j -1-ck'k). (53)

The proof of the theorem depends upon the statements

made on page 20 that if one or three vectors of a right-handed

system be reversed the resulting system is left-handed, but

if two be reversed the system remains right-handed. If then

one of the coefficients in (52) is negative, the directions of the

other two axes may be reversed. Then all the coefficients

are negative. If two of the coefficients in (52) are negative,

the directions of the two vectors to which they belong may

be reversed and then the coefficients in are all positive.

Hence in any case the reduction to the form in which all

the coefficients are positive or all are negative has been

performed.

As a limiting case between that in which the coefficients

are all positive and that in which they are all negative comes
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the case in which one of them is zero. The dyadic then

taJiies the form
<? = ai'i+6j'j (54)

and is planar. The coefficients a and h may always be taken

positive. By a proof similar to the one given above it is

possible to show that any planar dyadic may be reduced to

this form. The vectors i' and j' are perpendicular, and the

vectors i and j are likewise perpendicular.

It might be added that in case the three coefficients a, 6, c

in the reduction (53) are all different the reduction can be

performed in only one way. If two of the coefficients (say

a and 6) are equal the reduction may be accomplished in an

infinite number of ways in which the third vector k' is always

the same, but the two vectors 1', j' to which the equal coeffi-

cients belong may be any two vectors in the plane per-

pendicular to k. In all these reductions the three scalar

coefficients will have the same values as in any one of them.

If the three coefficients a, b, c are aU equal when (P is reduced

to the normal form (63), the reduction may be accomplished

in a doubly infinite number of ways. The three vectors

i', j', k' may be any right-handed rectangular system in

space. In all of these reductions thei;Bree scalar coefficients

are the same as in any one of them. These statements will

not be proved. They correspond to the fact that the ellipsoid

which is the locus of the terminus of r' may have three

different principal axes or it may be an ellipsoid of revolution,

of finally a sphere.

Theorem: Any self-conjugate dyadic may be expressed in

the form ^ ..,,.., ,, ,cc\= an +bjj + cki. (55)

where a, i, and c are scalars, positive or negative.

Let = ai'i +hj'3 +cli'k, (52)

0o = aii' +bjy +ckk',
20



306 VECTOR ANALYSIS

0o'0 = a^ii +62jj +c2kk.

Since ^ = ^0,

I = ii +jj +kk =i'i' +j'j + k'k',

(<?2-a2i).i/ = o

(P2_a21=(j2_a2)jj + (c2_a2)]£t^

(<?2_a2I).i=0.

If i and i' were not parallel (JP^ — a? I) would annihilate

two vectors i and i' and hence every vector in their plane.

(^2 _ flj2 J) -vvrould therefore possess two degrees of nullity

and be linear. But it is apparent that if a, 6, c are different

this dyadic is not linear. It is planar. Hence 1 and i' must

be parallel. In like manner it may be shown that j and j
',

k and k' are parallel. The dyadic therefore takes the form

<?>= ail + 6jj + ckk

where a, &, c are positive or negative scalar constants.

Double Multiplication *

117.] Definition : The dovhle dot product of two dyads is

the scalar quantity obtained by multiplying the scalar product

of the antecedents by the scalar product of the consequents.

The product is denoted by inserting two dots between the

•' ' ab:cd = a«cb*d. (56)

This product evidently obeys the commutative law

ab:cd = cd:ab,

1 The researches of Professor Gibbs upon Double Multiplication are here

printed for the first time.
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and the distributive law both with regard to the dyads and

with regard to the vectors in the dyads. The double dot

product of two dyadics is obtained by multiplying the prod-

uct out formally according to the distributive law into the

sum of a number of double dot products of dyads.

If (2> = a^bj + agbj + agbg + •
••

and ?F = c^dj + Cjdj + Cgdg + • •

(?: ¥=(&^\i^ + &^\ + &^}a^ + ) !(Cidi + C2d2

+ e3d8 + ...)

= aibi:cidi + aibjiOjda + aib^tCadj + • • •

+ a2b2:cidi + a2b2:c2d2 + a2b2:c8d3+ ••• (56)'

+ as ''s 5 01*1 + a8^8'''2*2 + agbjZCjdg + ••

+

(?:f= ai«Ci bi'dj + aj«C2 bj.d2 + ai«C3 bi«dg + ---

+ a2«Ci b2'di+d2«C2 b2'd2 + a2'C3 b2'd3+-.-

+ a3«Ci bg.di + ag.Cg b3.d2 + a3.C3 bg.dgH

+ (56)"

Definition : The double cross product of two dyads is the

dyad of which the antecedent is the vector product of the

antecedents of the two dyads and of which the consequent is

the vector product of the consequent of the two dyads. The

product is denoted by inserting two crosses between the

dyads
abjjcd = axc bxd. (57)

This product also evidently obeys the commutative law

ab H cd = cd^ ab,



308 VECTOR ANALYSIS

and the distributive law both with regard to the dyads and

with regard to the vectors of which the dyads are composed.

The double cross product of two dyadics is therefore defined

as the formal expansion of the product according to the

distributive law into a sum of double cross products of

dyads.

If <? = a^bi + agbj + agbg + •••

and ?? = Cjdi + Cgda + ^sdg + •• r

0-¥= (a^bi + a^ba + agbg + ••) ^ ("idi + c^d^

+ C3d3 + ...)

= aibi;jcidi + aibi ^ Cg da + a^bi ^Csd3 + ...

+ a2b2xCidi + a2b2 Jcada + agba xC3d3 + ... (57)'

+ a3b3 ^Cidi + agbg ^Cjda + agbg xC3d3 + ••

+

0^¥=a.^xci ^iXdj + aiXCj biXd2 + aiXC3 biXdg + ...

H-aaXOi baXdi + ajXCj h^xA^ + sk^XCg b2Xd3H

H-agXCg bgXdj +a3Xe2 bgXd^ +agXC8 b3Xdg+....

+ (67)"

Theorem: The double dot and double cross products of

two dyadics obey the commutative and distributive laws of

multiplication. But the double products of more than two
dyadics (whenever they have any meaning) do not obey the

associative law.

01 ¥= ¥-.0

1¥=¥10 (68)

(i<Pl¥)lii^0-Q¥^^Q-). -

The theorem is sufficiently evident without demonstration.
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Theorem: The double dot product of two fundamental

dyads is equal to unity or to zero according as the two
dyads are equal or different.

ij:ij=i.i j.j = l

ij:ki = i.k j«i = 0.

Theorem: The double cross product of two fundamental

dyads (12),is equal to zero if either the antecedents or the

consequents are equal. But if neither antecedents nor con-

sequents are equal the product is equal to one of the fundar

mental dyads taken with a positive or a negative sign.

That is

ij^ik=ixi jxk =

ij^ki=ixk jxi = H-jk.

There exists a scalar triple product of three dyads in

which the multiplications are double. Let 0, ¥, 8 be any

three dyadics. The expression

0^ ¥:Q

is a scalar quantity. The multiplication with the double

cross must be performed first. This product is entirely in-

dependent of the order in which the factors are arranged or

the position of the dot and crosses. Let a b, c d, and e f be

three dyads,

ab^cd:ef = [ace] [bdf]. (59)

That is, the product of three dyads united by a double cross

and a double dot is equal to the product of the scalar triple

product of the three antecedents by the scalar triple product

of the three consequents. From this the statement made

above follows. For if the dots and crosses be interchanged

or if the order of the factors be permuted cyclicly the two

scalar triple products are not altered. If the cyclic order of
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the factors is reversed each scalar triple product changes

sign. Their product therefore is not altered.

118.] A dyadic may be multiplied by itself with double

cross. Let
(P = al + bm + en

(?> ^(?> = (aH-bm + en)
;;
(al + bm + cn)

= axa 1 X 1 + a X b 1 x m + a X e Ixn

+bxa mxl+bxb mxm+bxc mxn

+ exa nxl + cxb n x m + c x e n x n.

The products in the main diagonal vanish. The others are

equal in pairs. Hence

<Z>5J# = 2(bxc mxn + cxa nxl + axb Ixm). (60)

If a, b, e and 1, m, n are non-coplanar this may be written

[_abcj 1^1 mnj

The product (?> ^ <? is a species of power of 0. It may be re-

garded as a square of • The notation 0^ wiU. be employed

to represent this product after the scalar factor 2 has been

stricken out.

0^ = —~- = (bxe mxn + cxa nxl + axb Ixm) (61)

The triple product of a dyadic expressed as the sum of

three dyads with itself twice repeated is

0^0:0 = ^J>2 :

0^: = Qi X c mxn + exa nxl + axb Ixm)
: (al + bm + en).

In expanding this product every term in which a letter is

repeated vanishes. For a scalar triple product of three veo-
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tors two of which are equal is zero. Hence the product

reduces to three terms only

(P^'.0=\\)ea] [mnl] + [cab] [nlm] + [abe] [Imn]

or (Pj! <^ = 3 [abc] [Imn]

<l>i0:(l> = 6[ahc] [Imn].

The triple product of a dyadic by itself twice repeated is

equal to six times the scalar triple product of its antecedents

multiplied by the scalar triple product of its consequents.

The product is a species of cube. It will be denoted by 0^

after the scalar factor 6 has been stricken out.

0''0:0
0s = -^ = [ab c] [Imn]. (62)

119.] If 0^ be called the second of ; and 0^, the third of

0, the following theorems may be stated concerning the

seconds and thirds of conjugates, reciprocals, and products.

Theorem : The second of the conjugate of a dyadic is equal

to the conjugate of the second of that dyadic. The third of

the conjugate is equal to the third of the dyadic.

Theorem: The second and third of the reciprocal of a

dyadic are equal respectively to the reciprocals of the second

and third.

Let (P = al + bm4-en

(?-i = 1' a' + m' b' + n' c' (36)

a'l' + b'm' + c'n'

(64)

[abe] [Imn]
(60)'
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((pj)-! = [abc] ftsMiJ (la + mb + nc)

But [a' b' c'] [a b c] = 1 and [1' m' n'] [1m n] = 1.

Hence i^^Y^ = iO-^\ = 0^-^

0g= [abc] [Imn],

^^^^ ""[abc] [Imn]'

(<p-i)3=[a'Vc'] [I'm'n'].

Hence ((Pg)"! = Q^-^^ = (^^g-i.

Theorem: The second and third of a product are equal

respectively to the product of the seconds and the product of

the thirds.

i0.W\=0,W,. ^^^>

Choose any three non-coplanar vectors 1, m, n as consequents

of and let 1', m',n' be the antecedents of W.

(P = al + b m + en,

r = l'd + m'e + n'f,

?r=ad + be + cf,

( • ¥)^ =bxc exf + oxa fxd + axb dxe,

(^2 = bxc mxn + cxa nxl+axb Ixm,

fg = m' X n' e X f + n' X 1' f x d + 1' x m' dxe.

Hence 0^- ¥^ = 10X0 exf + cxa fxd + axb dxe.

Hence (0 . ¥)^ = 0^. ¥^.

i0. 5P-)3 = [abc] [def]
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<?g = [a b c] [1 m n],

?r8 = [l'm'ii'] [def].

Hence ^s ^8= [a be] [def].

Hence ((P • ?r)3 = (Pg fg.

Theorem : The second and third of a power of a dyadic are

equal respectively to the powers of the second and third of

the dyadic.

Theorem : The second of the idemfactor is the idemfactor.

The third of the idemfactor is unity.

Ig — X.

Theorem: The product of the second and conjugate of

a dyadic is equal to the product of the third and the

idemfactor.

0^.0,= 0^1, (68)

<p2 = bxc mxn + cxa nxl + axb Ixm,

0o = l& + mb + nc,

0^ . 0g= [Imri] (h X c a + c x a b + a x b c).

The antecedents a, b, c of the dyadic may be assumed to

be non-coplanar. Then

(bxc a + cxa b + axb c)= [ab c] (a'a + V b + c' c)

= [a be] I.

Hence 0^ • 0^= <l>s I.

120.] Let a dyadic be given. Let it be reduced to the

sum of three dyads of which the three antecedents are

non-coplanar.
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(2> = al + b m + cn,

<p2 = bxc mxn + cxa nxl + axb Ixm,

<Ps = [abc] [Imn].

Theorem: The necessary and sufficient condition that a

dyadic <P be complete is that the third of be different from

zero.

For it was shown (Art. 106) that both the antecedents and

the consequents of a complete dyadic are non-coplanar.

Hence the two scalar triple products which occur in 0^

cannot vanish.

Theorem: The necessary and sufficient condition that a

dyadic be planar is that the third of shall vanish but the

second of shall not vanish.

It was shown (Art. 106) that if a dyadic be planar its con-

sequents 1, m, n must be^planar and conversely if the conse-

quents be coplanar the dyadic is planar. Hence for a planar

dyadic 0^ must vanish. But 0^ cannot vanish. Since a,

b, c have been assumed non-coplanar, the vectors b x c, c x a,

a X b are non-coplanar. Hence if 0^ vanishes each of the

vectors mxn, nxl, Ixm vanishes— that is, 1, m, n are col-

linear. But this is impossible since the dyadic is planar

and not linear.

Theorem: The necessary and sufficient condition that a

non-vanishing dyadic be linear is that the second of 0, and

consequently the third of 0, vanishes.

For if be linear the consequents 1, m, n, are coUinear.

Hence their vector products vanish and the consequents of

<?2 vanish. If conversely 0^ vanishes, each of its consequents

must be zero and hence these consequents of are coUinear.

The vanishing of the third, unaccompanied by the vanish-

ing of the second of a dyadic, implies one degree of nullity.

The vanishing of the second implies two degrees of nuUity.
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The vanishing of the dyadic itself is complete nullity. The
results may be put in tabular form.

^^^% 0is complete,

<^8 = 0> <P2 9^ 0> <^ is planar. (69)

(Pg = 0, (2>2 = 0, (P ^ 0, is linear.

It follows immediately that the third of any anti^self-conjugate

dyadic vanishes; but the second does not. For any such

dyadic is planar but cannot be linear.

Nonion Form. Determinants^ Invariants of a Dyadic

121.] If ^ be expressed in nonion form

(? = aii ii + ai2 ij + ^isik (13)

+ a2iJi + a22JJ + Hzi'^

+ agi k i + agj k j + agg k k.

The conjugate of has the same scalar coefficients as 0, but

they are arranged symmetrically with respect to the main

diagonal. Thus

0o=a^^ii + aji ij + agj ik,

+ ai2 J i + ^22 J J + «S2 J *^» (70)

+ ttigki + ttaaJt + aggkk.

The second of may be computed. Take, for instance, one

term. Let it be required to find the coefficient of ij in 0^.

What terms in can yield a double cross product equal to

ij? The vector product of the antecedents must be i and

the vector product of the consequents must be j. Hence the

antecedents must be j and k ; and the consequents, k and i.

These terms are

a2iJixa83t^ = -«2i«8siJ

a3i^ixa23J*= = "^8i«23iJ-

1 The lesnlts hold only for deteiminants of the third order. The extension to

determinants of higher orders is through Multiple Algebra.
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Hence the term in i j in (Pg is

This is the first minor of a^^ in the determinant

'u

"21

*12 "13

*28

*31 '*32 ""i

This minor is taken with the negative sign. That is, the

coefficient of 1 j in (Pg is what is termed the cofactor of the

coefficient of ij in the determinant. The cofactor is merely

the first minor taken with the positive or negative sign

according as the sum of the subscripts of the term whose

first minor is under consideration is even or odd. The co-

efficient of any dyad in 0^ is easily seen to be the cofactor of

the corresponding term in 0. The cofactors are denoted

generally by large letters.

^11=
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<P8 = [(^'ll i + «21 J + «S1 *:) («21 i + «23 J + «88 1^)

(aiji + aagj + agjk)] [i j k]

This is easily seen to be equal to the determinant

*u

*21

*31

*ia

"22

*82

*18

*23

*33

(72)

For this reason (Pg is frequently called the determinant of <I>

and is written

0^=\0\ (72)'

The idea of the determinant is very natural when is

regarded as expressed in nonion form. On the other hand

unless be expressed in that form the conception of (Pg,

the third of 0, is more natural.

The reciprocal of a dyadic in nonion form may be found

most easily by making use of the identity

0..0,= 0A (68)

or 0„-^ = —- 0„

or

Hence 0-^ =

0-^ = —- 0„„
0s
""

+ ^12Ji+^22JJ+ A2Jl^

.+ ^igki + ^agkj + ^askk.

«11
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If the determinant be denoted by D

+ ^ji + ^^jj + %^jk (73)'

If ?r is a second dyadic given in nonion form as

?r = &iiii + Jiaij + ^aik'

+ Jgiki + Ssgkj + &83kk,

the product O ' W oi the two dyadics may readily be found

by actually performing the multiplication

0.W= (ttji 611 + ai2 ^21 + «18 ^31) " + («ii hi + "'la ^22

+ «13 ^32) i J + (^^ll ^13 + «12 *23 + ^'iS ^Ss) ik

+ (Sl hi + «22 ^21 + «^23 ^31) J i + («21 ^12 + «22 ^22

+ «23 ^32) JJ + («21 hz + «22 ^2S + «23 ^83) J ^

+ (^31 h\ + '^32 hi + '^33 ^31) k i + (''31 *12 + «32 ^22

+ a33 ^32) k J + iHl hi + «32 ^23 + «33 ^Ss) ^ k-

+ ttgl hi + «22 ^22 + S3 ^23 C^^)

"'' ^31 "31 + *32 "32 + *33 "SS"

Since the third or determinant of a product is equal to the

product of the determinants, the law of multiplication of

determinants follows from (65) and (74).
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"11

Hi

Hi

a

*12

*22

*8a

"IS

«2S

*S8

"11

"21

"81

"12

"22

"82

"18

"28

«11 ^11 + «:

0521 &11 + a.

12 ''21 "f" *19 6,

'22 ''21 "" "^'O "i

18 "81

28 °81

«31*11 + '*32^21 + ''^SS^Sl

11 ^12 + ''^12 ^22 + a,„6.

«21 ^12 + S2 *22 + *
18 "82

28 ''32

*11 "is
"'" '^12 ''28 + ais 6.

IS "38'

ttgi 613 + a.'22 23
'' '''23 "88'

*81 ^12 + "'32 "22 + ^83 "32 ''Sl "is + *S2 ^28 + «;33 °83'

(76)

The rule may be stated in words. To multiply two deter-

minants form the determinant of which the element in the

mth row and mth column is the sum of the products of the

elements in the mth row of the first determinant and mth

column of the second.

If (? = aH-bm + en,

0^ = 'hxc mxn + cxa nxl + axb Ixm.
Then

I (pjl =(^2)3= D>xc cxa axb] [mxn nxl Ixm]

Hence

Hence

= (<^2)8 = [al'cP[linnP=(P3a

1<PJ =
^11 •^10 -"12 18

-^21 -^

"^31

22

"32 A83

'11

*21

*81

"12

*22

*82

*18

*23

*83

(77)

The determinant of the cofactors of a given determinant of

the third order is equal to the square of the given determinant.

122.] A dyadic has three scalar invariants— that is

three scalar quantities which are independent of the form in

which Q is expressed- These are

<P. "^8'

the scalar of (P, the scalar of the second of (P, and the third

or determinant of (?. If be expressed in nonion form these

quantities are
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^s
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This equation may be called the Hamilton-Cayley equation.

Hamilton showed that a quaternion satisfied an equation

analogous to this one and Cayley gave the generalization to

matrices. A matrix of the wth order satisfies an algebraic

equation of the nth degree. The analogy between the theory

of dyadics and the theory of matrices is very close. In fact,

a dyadic may be regarded as a matrix of the third order and

conversely a matrix of the third order may be looked upon as

a dyadic. The addition and multiplication of matrices and

dyadics are then performed according to the same laws. A
generalization of the idea of a dyadic to spaces of higher

dimensions than the third leads to Multiple Algebra and the

theory of matrices of orders higher than the third.

Summary of Chapter V

A vector r' is said to be a linear function of a vector r

when the components of r' are linear homogeneous functions

of the components of r. Or a function of r is said to be a

linear vector function of r when the function of the sum of

two vectors is the sum of the functions of those vectors.

f(ri + r2)=f(ri) + f(r2). (4)

These two ideas of a linear vector function are equivalent.

A sum of a number of symbolic products of two vectors,

which are obtained by placing the vectors in juxtaposition

without intervention of a dot or cross and which are called

dyads, is called a dyadic and is represented by a Greek

capital. A dyadic determines a linear vector function of

a vector by direct multiplication with that vector

<P = aibi + a2b2 + a3b3 + -.- (7)

<P • r = aj bj • r + ag bg • r + aj bj • r + • • • (8)

21



322 VECTOR ANALYSIS

Two dyadics are equal when they are equal as operators

upon all vectors or upon three non-coplanar vectors. That

is, when

,x = W • X for aU values or for three non-

coplanar values of r, (10)

or r • = T • W for all values or for three non-

coplanar values of r,

or i . . x = i ' W ' T for all values or for three non-

coplanar values of r and s.

Any linear vector function may be represented by a dyadic-

Dyads obey the distributive law of multiplication with

regard to the two vectors composing the dyad

(a + b + c+.--)(l-l-m-|-nH ) = al + am + aiiH

-I- b 1 -1- b m + b n -I- • • •

-I- cl + cm + en -I- • •

+
(11)'

Multiplication by a scalar is associative. In virtue of these

two laws a dyadic may be expanded into a sum of nine terms

by means of the fundamental dyads,

ii, ij, ik,

ji. jj, jk, (12)

ki, kj, kk,

as <? = «!! ^i + *i2 ij + ai3 ik,

= aai i i + «22 J J + «23 J k. (13)

= a3iki + aggkj + agskk.

If two dyadics are equal the corresponding coefficients ia

their expansions into nonion form are equal and conversely.
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Any dyadic may be expressed as the sum of three dyads of

which the antecedents or the consequents are any three

given non-coplanar vectors. This expression of the dyadic is

uaique.

The symbolic product ab known as a dyad is the most

general product of two vectors in which multiplication by a

scalar is associative. It is called the indeterminate product.

The product imposes five conditions upon the vectors a and

b. Their directions and the product of their lengths are

determined by the product. The scalar and vector products

are functions of the indeterminate product. A scalar and

a vector may be obtained from any dyadic by inserting a dot

and a cross between the vectors in each dyad. This scalar

and vector are functions of the dyadic.

<?>^ = ai . bi + aa • bj + ag . bj + • • . (18)

^x = ai X bi + aj X bj + ag X bg + •
. • (19)

0s = i'0-i + j'0-j + ls.'0-i (20)

= <»ii + 0^22 ! ''^38'

<p^ = (j . <?> . k - k . (^ - j) 1+ (k . <P - 1 - 1 . (?> • k) j

+ (i.0.j-j.0.i)]!. (21)

= («23 - «32) i + ("^31 - ^is) i + C^n - "^2l)
^•

The direct product of two dyads is the dyad whose ante-

cedent and consequent are respectively the antecedent of the

first dyad and the consequent of the second multiplied by

the scalar product of the consequent of the first dyad and

the antecedent of the second.

(ab) . (cd) = (b.c)ae{ (28)

The direct product of two dyadics is the formal expansion,

according to the distributive law, of the product into the
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sum of products of dyads. Direct multiplication of dyadics

or of dyadics and a vector at either end or at both ends obeys

the distributive and associative laws of multiplication. Con-

sequently such expressions as

<P.¥.T, S'0'W, s.^.W.T, 0.W.S (24)-(26)

may be written without parentheses; for parentheses may

be inserted at pleasure without altering the value of the

product. In case the vector occurs at other positions than

at the end the product is no longer associative.

The skew product of a dyad and a vector may be defined

by the equation

(ab) X r = a b X r,

r X (a b) = r X a b. (28)

The skew product of a dyadic and a vector is equal to the

formal expansion of that product into a sum of products of

dyads and that vector. The statement made concerning the

associative law for direct products holds when the vector is

connected with the dyadics in skew multiplication. The

expressions

TX0'¥, 0.W XT, TX0'S, T'0 XB, TX0 xs (29)

may be written without parentheses and parentheses may be

inserted at pleasure without altering the value of the product.

Moreover

s . (r X <P) = (s X r) . <?, (<?> X r) • s = (P . (r X s),

0'(tx¥) = (^0xt^. W. (3iy

But the parentheses cannot be omitted.

The necessary and sufficient condition that a dyadic may
be reduced to the sum of two dyads or to a single dyad or

to zero is that, when expressed as the sum of three

dyads of which the antecedents (or consequents) are known
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to be non-eoplanar, the consequents (or antecedents) shall

be respectively coplanar or coUinear or zero. A complete

dyadic is one which cannot be reduced to a sum of fewer

than three dyads. A planar dyadic is one which can be

reduced to a sum of just two dyads. A linear dyadic is one

which can be reduced to a single dyad.

A complete dyadic possesses no degree of nullity. There

is no direction in space for which it is an annihilator. A
planar dyadic possesses one degree of nullity. There is one

direction in space for which it is an annihilator when used as

a prefactor and one when used as a postfactor. A linear

dyadic possesses two degrees of nullity. There are two

independent directions in space for which it is an annihilator

when used as a prefactor and two directions when used as a

postfactor. A zero dyadic possesses three degrees of nullity

or complete nullity. It annihilates every vector in space.

The products of a complete dyadic and a complete, planar,

or linear dyadic are respectively complete, planar, or linear.

The products of a planar dyadic with a planar or linear dyadic

are respectively planar or linear, except in certain cases where

relations of perpendicularity between the consequents of the

first dyadic and the antecedents of the second introduce one

more degree of nullity into the product. The product of a

linear dyadic by a linear dyadic is in general linear ; but in

case the consequent of the first is perpendicular to the ante-

cedent of the second the product vanishes. The product of

any dyadic by a zero dyadic is zero.

A dyadic which when applied to any vector in space re-

produces that vector is called an idemfactor. All idemfactors

are equal and reducible to the form

I = ii + ji + kk. (33)

Or I = aa' + bb' + cc'. (34)

The product of any dyadic and an idemfactor is that dyadic.



326 VECTOR ANALYSIS

If the product of two complete dyadics is equal to tlie idem-

factor the dyadics are commutative and either is called

the reciprocal of the other. A complete dyadic may be

canceled from either end of a product of dyadics and vectors

as in ordinary algebra ; for the cancelation is equivalent to

multiplication by the reciprocal of that dyadic. Incomplete

dyadics possess no reciprocals. They correspond to zero in

ordinary algebra. The reciprocal of a product is equal to the

product of the reciprocals taken in inverse order.

(0 . ?p-)-i = r-i . 0-\ (38)

The conjugate of a dyadic is the dyadic obtained by inter-

changing the order of the antecedents and consequents. The

conjugate of a product is equal to the product of the con-

jugates taken in the opposite order.

i(p. ¥),= ¥,. 0„. (40)

The conjugate of the reciprocal is equal to the reciprocal of

the conjugate. A dyadic may be divided in one and only

one way into the sum of two parts of which one is self-

conjugate and the other anti-self-conjugate.

0^\(^0+0,) + \i0-0,). (43)

Any anti-self-conjugate dyadic or the anti-self-conjugate

part of any dyadic, used in direct multiplication, is equivalent

to minus one-half the vector of that dyadic used in skew

multiplication.

I
r. (<?-(?,)=-

-J

rx<P,. (44)

A dyadic of the form c X I or I x c is anti-self-conjugate and

used in direct multiplication is equivalent to the vector c

used in skew multiplication.
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Also c X r = (I X e) • r = (c X I) • r, (46)

c X (2> = (I X c) . (? = (c X I) . <^>.

The dyadic c X I or I x c, where c is a unit vector is a quad-

rantal versor for vectors perpendicular to c and an annihilator

for vectors parallel to c. The dyadic Ixc + ccisa true

quadrantal versor for all vectors. The powers of these dyadics

behave Uke the powers of the imaginary unit v'— 1, as may

be seen from the geometric interpretation. Applied to the

unit vectors i, j, k

Ixi = ixl = kj— jk, etc. (49)

The vector a x b in skew multiplication is equivalent to

(a X b) X I in direct multiplication.

(axb) xT = Ix(axb) = ba-ab (50)

(a X b) X r = (b a — a b) • r

r X (a X b) = r . (b a - ab). (51)

A complete dyadic may be reduced to a sum of three

dyads of which the antecedents among themselves and the

consequents among themselves each form a right-handed

rectangular system of three unit vectors and of which the

scalar coefi&cients are all positive or all negative.

# = ± (ai'i + 6j'j + ck'k). (53)

This is called the normal form of the dyadic. An incom-

plete dyadic may be reduced to this form but one or more of

the coefficients are zero. The reduction is unique in case

the constants a, h, c are different. In case they are not

different the reduction may be accomplished in more than

one way. Any self-conjugate dyadic may be reduced to

the normal form
(^» = aii-l-6jj-f-ckk, (55)

in which the constants a, h, c are not necessarily positive.
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The double dot and double cross multiplication of dyads

is defined by the equations

ab : cd = a • c b .d, (56)

ab|^cd = axc bxd. (57)

The double dot and double cross multiplication of dyadics

is obtained by expanding the product formally, according to

the distributive law, into a sum of products of dyads. The

double dot and double cross multiplication of dyadics is com-

mutative but not associative.

One-half the double cross product of a dyadic by itself

is called the second of 0. If

/ <P = al + bm + cn,

0^=1 <Px <P=b xc mxn + cxa nxl + axb Ixm. (61)

One-third of the double dot product of the second of and

is called the third of and is equal to the product of the

scalar triple product of the antecedents of and the scalar

triple product of the consequent of 0.

0^=\0^0'.0=\a,\ic]l\mn\. (62)

The second of the conjugate is the conjugate of the second.

The third of the conjugate is equal to the third of the

original dyadic. The second and third of the reciprocal are

the reciprocals of the second and third of the second and

third of a dyadic. The second and third of a product are the

products of the seconds and thirds.

i^c)s = K (63)

(<?H1)^=((Z»,)-1,

«^^)8 = (<^3r'- (64)

{_0.W\=0^-W^ (65)

i0.T)^=0^W^.
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The product of the second and conjugate of a dyadic is equal

to the product of the third and the idemfactor.

0^.0^=0^1 (68)

The conditions for the various degrees of nullity may be

expressed in terms of the second and third of 0.

<^>3 9i 0, is complete

<Pg = 0, 0^jtO, is planar (69)

0^ = 0, 0^ = 0, 0^0, is linear.

The closing sections of the chapter contain the expressions

(70)-(78) of a number of the results in nonion form and the

deduction therefrom of a number of theorems concerning

determinants. They also contain the cubic equation which is

satisfied by a dyadic 0.

0s -<Ps 0^+ 0^s 0^+03 1 = 0. (79)

This is called the Hamilton-Cayley equation. The coeffi-

cients 0g, 0^g, and (Pg are the three fundamental scalar in-

variants of 0.

Exercises on Chapter V

1. Show that the two definitions given in Art. 98 for

a linear vector function are equivalent.

2. Show that the reduction of a dyadic as in (16) can be

accomplished in only one way if a, b, c, 1, m, n, are given.

3. Show ((?> X a)p= — a X 0c-

4. Show that if <P x r= Wxi for any value of r different

from zero, then must equal ST— unless both and JFare

linear and the line of their consequents is parallel to r.

5. Show that if (P • r = for any three non-coplanar values

of r, then = 0.
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6. Prove the statements made in Art. 106 and the con-

verse of the statements.

7. Show that if S is complete and ii • S= ¥> S , then

and ¥ are equal. Give the proof by means of theory-

developed prior to Art. 109.

8. Definition : Two dyadics such that 0.W=W- — that

is to say, two dyadics that are commutative— are said to be

homologous. Show that if any number of dyadics are homoge-

neous to one another, any other dyadics which may be obtained

from them by addition, subtraction, and direct multiplication

are homologous to each other and to the given dyadics. Show

also that the reciprocals of homologous dyadics are homolo-

gous. Justify the statement that if > W-^ or ¥-^ > 0,

which are equal, be called the quotient of by ¥, then the

rules governing addition, subtraction, multiplication and

division of homologous dyadics are identical with the rules

governing these operations in ordinary algebra— it being

understood that incomplete dyadics are analogous to zero,

and the idemfactor, to unity. Hence the algebra and higher

analysis of homologous dyadics is practically identical with

that of scalar quantities.

9. Show that (I x e) • <P= c x f and (c x I) • (?= c X <2'.

10. Show that whether or not a, b, c be coplanar

abxc+bcxa+caxb = [abc]I

and b X c a + c-x a b + a x b c = [a b c] I.

11. If a, b, c are coplanar use the above relation to prove

the law of sines for the triangle and to obtain the relation

with scalar coefficients which exists between three coplanar

vectors. This may be done by multiplying the equation by a

unit normal to the plane of a, b, and c.

12. What is the condition which must subsist between the

coefficients in the expansion of a dyadic into nonion form if
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the dyadic be self-conjugate ? What, if the dyadic be anti-

self-conjugate ?

13. Prove the statements made in Art. 116 concerning the

number of ways in which a dyadic may be reduced to its

normal form.

14. The necessary and sufficient condition that an anti-

self-conjugate dyadic <P be zero is that the vector of the

dyadic shall be zero.

15. Show that if <P be any dyadic the product > ^c ^
self-conjugate.

16. Show how to make use of the relation 0^ = to

demonstrate that the antecedents and consequents of a self-

conjugate dyadic are the same (Art. 116).

17. Show that 0^1 0^= <^8^ ^

and (^0+W\=(P^ + (I>^W+W^.

18. Show that if the double dot product <P : <P of a dyadic

by itself vanishes, the dyadic vanishes. Hence obtain the

condition for a linear dyadic in the form 0^:0^ = 0.

19. Show that (<P + ef)3 = (Pj + a. (?2'f.

20. Show that (^0 + W)^= 0^+ 0^: W + : W^+ W^.

21. Show that the scalar of a product of dyadics is un-

changed by cyclic permutation of the dyadics. That is



CHAPTER VI

EOTATIONS AND STRAINS

123.] In the foregoing chapter the ' analytical theory of

dyadics has been dealt with and brought to a state of

completeness which is nearly final for practical purposes.

There are, however, a number of new questions which present

themselves and some old questions which present themselves

under a new form when the dyadic is applied to physics

or geometry. Moreover it was for the sake of the applica-

tions of dyadics that the theory of them was developed. It is

then the object of the present chapter to supply an extended

application of dyadics to the theory of rotations and strains

and to develop, as far as may appear necessary, the further

analytical theory of dyadics.

That the dyadic may be used to denote a transformation

of space has already been mentioned. A knowledge of the

precise nature of this transformation, however, was not needed

at the time. Consider r as drawn from a fixed origin, and r'

as drawn from the same origin. Let now

x' ^0-x.

This equation therefore may be regarded as defining a trans-

formation of the points P of space situated at the terminus of

r into the point P', situated at the terminus of r'. The origin

remains fixed. Points in the finite regions of space remain in

the finite regions of space. Any point upon a line

r = b -1- a; a

becomes a point r' = (? • b -|- a: (P • a.
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Hence straight lines go over into straight lines and lines

parallel to the same line a go over by the transformation into

lines parallel to the same line (P • a. In like manner planes

go over into planes and the quality of parallelism is invariant.

Such a transformation is known as a homogeneous strain.

Homogeneous strain is of frequent occurrence in physics. For

instance, the deformation of the infinitesimal sphere in a fluid

(Art. 76) is a homogeneous strain. In geometry the homo-

geneous strain is generally known by different names. It is

called an affine coUineation with the origin fixed. Or it is

known as a linear homogeneous transformation. The equa-

tions of such a transformation are

x' = a^^x + a^^y + a^^z

y' = a-n^^ + «2iy + ^zs^

124.] Theorem : If the dyadic gives the transformation

of the points of space which is due to a homogeneous strain,

0^ the second of 0, gives the transformation of plarie areas

which is due to that strain and all volumes are magnified by

that strain in the ratio of (Pg, the third or determinant of (P

to unity.

Let <?> = al + bm-F en

r' = (p.r = al.r + bm'r4-cn«r.

The vectors 1', m', n' are changed by into a, b, c. Hence

the planes determined by m' and n', n' and 1', 1' and m' are

transformed into the plane determined by b and c, e and a,

a and b. The dyadic which accomplishes this result is

<?2 = txc mxn + cxa nxl + axb Ixm.

Hence if s denote any plane area in space, the transformation

due to replaces s by the area s' such that

s' = <^>o • s.
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It is important to notice that the vector s denoting a plane

area is not transformed into the same vector s' as it would

be if it denoted a line. This is evident from the fact that in

the latter case (? acts on s whereas in the former case 0^ acts

upon s.

To show that volumes are magnified in the ratio of 0g to

unity choose any three vectors d, e, f which determine the

volume of a parallelopiped [d e f]. Express with the vec-

tors which form the reciprocal system to d, e, f as consequents.

<i!> = ad' + bc' + cf.

The dyadic changes d, e, f into a, b, c (which are different

from the a, b, c above unless d, e, f are equal to 1', m', n').

Hence the volume [d e f ] is changed into the volume [a b c].

(?3 = [abc] [d'e'f]

[d'e'f']-^ = [def].

Hence [a be] = [def] 0^.

The ratio of the volume [a b cj to [d e f] is as 0g is to unity.

But the vectors d, e, f were any three vectors which deter-

mine a parallelopiped. Hence all volumes are changed by

the action of in the same ratio and this ratio is as 0^ is to 1.

Rotations about a Fixed Point. Versors

125.] Theorem : The necessary and sufficient condition that

a dyadic represent a rotation about some axis is that it be

reducible to the form

<^ = i'i-hj'j + k'k (1)

where i', j', k' and i, j, k are two right-handed rectangular

systems of unit vectors.

Let I = xi + yj + zk

0'T = xi' + yj' + ak'.
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Hence if is reducible to the given form the vectors i, j, k

are changed into the vectors i', j', k' and any vector r is

changed from its position relative to i, j, k into the same posi-

tion relative to i',j',k'. Hence by the transformation no

change of shape is effected. The strain reduces to a rotation

which carries i, j, k into i', j', k'. Conversely suppose the

body suffers no change of shape— that is, suppose it subjected

to a rotation. The vectors i, j, k must be carried into another

right-handed rectangular system of unit vectors. Let these

be i', j', k'. The dyadic may therefore be reduced to the

form
<P = i'i + j'j+k'k.

Definition : A dyadic which is reducible to the form

i'i + j'j + k'k

and which consequently represents a rotation is called a

versor.

Theorem: The conjugate and reciprocal of a versor are

equal, and conversely if the conjugate and reciprocal of a

dyadic are equal the dyadic reduces to a versor or a versor

multiplied by the negative sign.

Let <2> = i' i + j' j + k' k,

<?>o
= ii' + Jj' + kk',

(?>.<?>^ = i'i' + j'j' + k'k' = I

0-^=0^.

Hence the first part of the theorem is proved. To prove the

second part let

<P = ai + b j + ck,

<p^ = ia-|-j b + kc,

(^>. <^^ = aa+ b b + cc.

If 0--^ =0c, 0'0c = I-

Hence aa + bb + cc = I.
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Hence (Art. 108) the antecedents a, b, c and the consequents

a, b, c must be reciprocal systems. Hence (page 87) they

must be either a right-handed or a left-handed rectangular

system of unit vectors. The left-handed system may be

changed to a right-handed one by prefixing the negatiTC

sign to each vector. Then

<?>-i'i + yj + k'k,

or # = _(i'i + j' j + k'k). ^ ^

The third or determinant of a versor is evidently equal to

unity ; that of the versor with a negative sign, to minus one.

Hence the criterion for a versor may be stated in the form

<?> . (2>c
= I, 0^=\0\=1. (2)

Or inasmuch as the determinant of is plus or minus one

if 0' 0c=l, it is only necessary to state that if

0. 0c=I, <?3=l <PI >0, (2)'

(P is a versor.

There are two geometric interpretations of the transforma-

tion due to a dyadic such that

0- 0(,=-I 0^ = \0\=-l (8)

<?> = -(i'i + j'j + k'k).

The transformation due to (P is one of rotation combined with

reflection in the origin. The dyadic i'i+j'j-|-k'k causes a

rotation about a definite axis — it is a versor. The negative

sign then reverses the direction of every vector in space and

replaces each figure by a figure symmetrical to it with respect

to the origin. By reversing the directions of i' and j' the

system i', j', k' stiU. remains right-handed and rectangular,

but the dyadic takes the form

<2' = i'i + j'j-k'k,

or = (i'i' + j' j' - k'k') . (i'i + j' j + k'k).
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Hence the transformation due to (? is a rotation due to

i'i+j'j + k'k followed by a reflection in the plane of i' and

j'. For the dyadic i'i'+ j'j'— k'k' causes such a transfor-

mation of space that each point goes over into a point sym-

metrically situated to it with respect to the plane of 1' and j'.

Each figure is therefore replaced by a symmetrical figure.

Definition : A transformation that replaces each figure by

a symmetrical figure is called a perversion and the dyadic

which gives the transformation is called a perversor.

The criterion for a perversor is that the conjugate of a

dyadic shall be equal to its reciprocal and that the determi-

nant of the dyadic shall be equal to minus one.

4>. 00 = 1, I (? I = - 1. (3)

Or inasmuch as if (P . (?>g = I, the determinant must be plus

or minus one the criterion may take the form

<P.<?^ = I, \0\<O, (3)'

(P is a perversor.

It is evident from geometrical considerations that the prod-

uct of two versors is a versor ; of two perversors, a versor

;

but of a versor and a perversor taken in either order, a

perversor.

126.] If the axis of rotation be the i-axis and if the angle

of rotation be the angle q measured positive in the positive

trigonometric direction, then by the rotation the vectors

i, j, k are changed into the vectors i', j', k' such that

i' = i'

j' = j cos g- -I- k sin q,

k' = — j sin g- -f- k cos q.

The dyadic (? = i'i-)-j'j + k'k which accomplishes this rota-

tion is

22
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<P = ii + cos g- (jj + kk) + sin q (kj - jk). (4)

jj +kk = I-ii,

k j — j k = I X i.

Hence * <^ = i i + cos 2 (I — i i) + sin g I x i. (5)

If more generally in place of the i-axis any axis denoted

by the unit vector a be taken as the axis of rotation and if as

before the angle of rotation about that axis be denoted by q,

the dyadic (P which accomplishes the rotation is

<P = a a + cos 2 (I — a a) 4- sin q I x a. (6)

To show that this dyadic actually does accomplish the

rotation apply it to a vector r. The dyad a a is an idemfactor

for aU vectors parallel to a; but an annihilator for vectors

perpendicular to a. The dyadic I — a a is an idemfactor

for all vectors in the plane perpendicular to a; but an

annihilator for all vectors parallel to a. The dyadic I x a

is a quadrantal versor (Art. 113) for vectors perpendicular

to a; but an annihilator for vectors parallel to a. If then

r be parallel to a
<P«r = aa«r = r.

Hence leaves unchanged all vectors (or components of

vectors) which are parallel to a. If r is perpendicular to a

0.1 = cos qr + sin q a. x i.

Hence the vector r has been rotated in its plane through the

angle q. If r were any vector in space its component parallel

to a suffers no change ; but its component perpendicular to a

is rotated about a through an angle of q degrees. The whole

vector is therefore rotated about a through that angle.

Let a be given in terms of i, j, k as

a = ttj i + aj j + as k,

aa= a^^ ii + ajttj ij + *i ^3 ik
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+ ajflti ji + a^a jj+ a^a^ jk

+ agfti ki + agttg kj + a^^^ kk,

I = ii + jj + kk,

I X a = 0ii-a3ij + a^ik,

+ a3Ji + 0jj-aiJk,

— a2ki + «! kj + Okk.

<^ = {^i^ (1 — cos q) + cos 2} i i

+ losjag (1 — cosg-) — a^ sin g'} i

j

+ {a
J
Kg (1 — cos q) + a^ sin q]iTs.

+ {a^a
j^
(1 — cos q) + a^sin q) ji

+ {«2^ (1 - COS S) + cos q} j j

+ {flg 0S3 (1 — cos 2') — ftj sin g-j j k

+ {ffigai (1 — cos 2) — fflg sin q} ki

+ {*3 «2 (1 ~ cos 2) + «! sin q} kj

+ {ag2 (1 + cos 2) + cos 2} k k. (7)

127.] If be written as in equation (4) the vector of

and the scalar of may be found.

<Px = i X i + cos 2 (j X j + k X k) + sin 2 (k X j — j X k)

0^= — 2 sin q 1

(?5 = i • i + cos 2 (J
. j + kk) + sin 2 (k o j — j . k),

(P^ = 1 + 2 cos q.

The axis of rotation i is seen to have the direction of — 0^^,

the negative of the vector of 0. This is true in general.

The direction of the axis of rotation of any versor is the

negative of the vector of 0. The proof of this statement

depends on the invariant property of 0^. Any versor

may be reduced to the form (4) by taking the direction of 1
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coincident with the direction of the axis of rotation. After

this reduction has been made the direction of the axis is seen

to be the negative of 0^. But 0^ is not altered by the

reduction of (P to any particular form— nor is the axis of

rotation altered by such a reduction. Hence the direction of

the axis of rotation is always coincident with — (P^, the direc-

tion of the negative of the vector of 0.

The tangent of one-half the angle of version q is

sm a -\/<?x • <^x
ta,nq = - ^— = \, ^ ^

"
• (8)

-|^ 1 + cos 2 1+ 0a

The tangent of one-half the angle of version is therefore

determined when the values of 0^ and 0g are known. The

vector <?x and the scalar 0^, which are invariants of 0, deter-

mine completely the versor 0. Let ft be a vector drawn

in the direction of the axis of rotation. Let the magnitude

of Q, be equal to the tangent of one-half the angle q of

version,

a = i^' a.a-tan^l^.

The vector Q, determines the versor completely. Q will be

called the vector semi-tangent of version.

By (6) a versor was expressed in terms of a unit vector

parallel to the axis of rotation.

<P = a a + cos g (I — a a) -h sin 2 I X a.

Hence if ft be the vector semi-tangent of version

There is a more compact expression for a versor in terms

of the vector semi-tangent of version. Let c be any vector in

space. The version represented by ft carries

c — ft X c into c + ft X c.
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It will be sufficient to show this in case c is perpendicular to

Q. For if c (or any component of it) were parallel to Q, the

result of multiplying by ft x would be zero and the statement

would be that c is carried into c. In the first place the mag-

nitudes of the two vectors are equal. For

(c — ftxc)»(c — ftxc) = c.c + ftxc«ftxc — 2c.ftxc

(c + ftxc)»(c-l-ftxc) = c«c + ftxc'ftxc-|-2c«ftxc

C»0 + ftXC'ftXC = C«C-l-a.a CO — ft.c ft.c.

Since ft and c are by hypothesis perpendicular

c.c + ftxc.ftxc = c2(l-|- tan2 ~ q).

The term c • ft X c vanishes. Hence the equality. In the

second place the angle between the two vectors is equal to q.

(C — a X C) • (C + ft X c) _ C-C — ftXC'ftXC

c2 (1 + tan2 I q) c2 (1 + tan2 1 2)

c2 (1 - tan2
I g)

c2 (1 + tan2 1 q-)

= cos q

(c — a X c) X (c + a X c) _ 2 c X (a X c)

c2 (1 + tan2 Iq-)
~

ca (1 + tan^ 1 q)
2

2 c^ tan
2f-== sin q. Vv/

^

Hence the cosine and sine of the angle between c — ft x c

and c + ft X c are equal respectively to the cosine and sine of

the angle q : and consequently the angle between the vectors

must equal the angle q. Now
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C — ftxc=(I — Ixft)«c

and (c + Q X c) = (I + I X a) • c

(I + 1 X a) • (I - 1 X a)-i. (I -ixa) = i + ixa.

Multiply by c

(H-ixa)'(i-ix a)-^ . (c - a X c) = c + a X c.

Hence the dyadic

<?> = (I + 1 X a) .
(I - 1 X a)"^ (10)'

carries the vector c— a X c into the vector c + a X c no matter

what the value of c. Hence the dyadic determines the

version due to the vector semi-tangent of version Q,.

The dyadic I + 1 x a carries the vector c — a X c into

(i-t-a.a)c.

(i + ixa)'(c — axc) = c + axc— axc-ax(axc)

(i + i X a)-(c-a + c) = c + a-ac = (i + a-a)c.

Hence the dyadic

i + ix

a

,, , „. ,

TTa:a=('-'^*>
carries the vector c — a x c into the vector c, if c be perpen-

dicular to a as has been supposed. Consequently the dyaditj

(I + Ixa)''

i + a-a

produces a rotation of all vectors in the plane perpendicular

to a. If, however, it be applied to a vector x a parallel to a

the result is not equal to x Q,.

(i + ixa)-(i + ixa) (i + ixa)„_ xo.

i + a-a i + a«a'^ i + a^a
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To obviate this difficulty the dyad Q, Q,, which is an annihilator

for all vectors perpendicular to Q, may be added to the nu-

merator. The versor may then be written

^^gg + d + ixa)'^
,

i + a-a ^ ^

(i-i-Txa)-(i + ixft) = i-i-2ixa + (ixa)-(ixa)

(I X a) • (I X ft) = (I X a) X a = I • a a - a • ai.

Hence substituting

:

^^ (l-ft.ft)I + 2ftft + 2Ixft „

l+ft-ft /
^ ^

This may be expanded in nonion form. Let

ft = ai + 6j + ck.

'(l + a2-62-c2)ii-|-(2a&-2c)ij + (2ac-|-2 6)ik]

+ (2a6 + 2c)ji+(l-a2 + &2_c2)jj + (2Jc-2a)jk [(11)

_ +(2ac-25)ki + (25c + 2a)kj + (l-ffi2-52+c2)kk J

1 + a^ + b^ + c^

128. ] If a is a unit vector a dyadic of the form

<P = 2aa-I (12)

is a hiquadrantal versor. That is, the dyadic turns the

points of space about the axis a through two right angles.

This may be seen by setting q equal to ir in the general

expression for a versor

= && + cos q (I — a a) + sin g' I x a,

or it may be seen directly from geometrical considerations.

The dyadic leaves a vector parallel to a unchanged but re-

verses every vector perpendicular to a in direction.

Theorem: The product of two hiquadrantal versors is a

versor the axis of which is perpendicular to the axes of the
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biquadrantal versors and the angle of which is twice the

angle from the axis of the second to the axis of the first.

Let a and b be the axes of two biquadrantal versors. The

product
J3 = (2bb-I).(2aa-I)

is certainly a versor; for the product of any two versors

is a versor. Consider the common perpendicular to a and b.

The biquadrantal versor 2 aa— I reverses this perpendicular

in direction. (2bb—I) again reverses it in direction and con-

sequently brings it back to its original position. Hence the

product S leaves the common perpendicular to a and b un-

changed. S is therefore a rotation about this line as axis.

i?.a = (2bb-I).(2aa-I).a = (2bb-I).a= 2bb.a-a.

The cosine of the angle from a to i? • a is

a • J2 . a = 2 b • a b • a — a • a = 2 (b • a)^ — 1 = cos 2 (b, a).

Hence the angle of the versor S is equal to twice the angle

from a to b.

Theorem : Conversely any given versor may be expressed

as the product of two biquadrantal versors, of which the axes

lie in the plane perpendicular to the axis of the given versor

and include between them an angle equal to one half the

angle of the given versor.

For let S be the given versor. Let a and b be unit vectors

perpendicular to the axis — J?^ of t^is versor. Furthermore

let the angle from a to b be equal to one half the angle of

this versor. Then by the foregoing theorem

i2 = (2bb-I).(2aa-I). (14)

The resolution of versors into the product of two biquad-

rantal versors affords an immediate and simple method for

compounding two finite rotations about a fixed point. Let

and ¥ be two given versors. Let b be a unit vector per-



ROTATIONS AND STRAINS 345

pendicular to the axes of and W. Let a be a unit vector

perpendicular to the axis of and such that the angle from

a to b is equal to one half the angle of 0. Let c be a unit

vector perpendicular to the axis of W and such that the angle

from b to is equal to one half the angle of W, Then

(?» = (2bb-I).(2aa-I)

?r=(2cc-I).(2bb-I)

?r . (?> = (2 c c - I) . (2 b b - I) 2
. (2 a a - I).

But (2 bb— Tf is equal to the idemfactor, as may be seen from

the fact that it represents a rotation through four right angles

or from the expansion

(2bb-I).(2bb-I) = 4b.b bb-4bb + I = L

Hence ?r. <? = (2 cc - I) • (2 aa - I).

The product of W into <? is a versor the axis of which is

perpendicular to a and c and the angle of which is equal to

QQfiJialf-the angle from a to c.

If and W are two versors of which the vector semi-

tangents of version are respectively ft^ and ftj* t^6 vector

semi-tangent of version ftg of the product ?r • <P is

Let <P=(2bb-I) . (2aa-I)

and ?F=(2cc-I) . (2bb-I).

W' = (2cc-T)' (2aa-I).

- 2 aa —^ = 4a.b ba — 2aa — 2bb + I,

(^x = 4a.b bxa,
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<P^ = 4(a.b)2-l,

.?r = 4c.b cb -2bb -2cc +1,

fx = 4 c . b c X b,

?F^ = 4(c.b)2-l

?r.(^ = 4c'a ca — 2cc — 2aa +1,

(f . (p)^ = 4c-a c X a,

(f. <?)^ = 4(c.a)2-l.

\ Hence fti = r, O^^T ' «3~
I ^ a • b "^ b • c " a. -ja^

...-—-^
_ (b X c) X (a X b) _ [a b c] b

^
^"~ a«bb'C a»bb»c'

But [abc]r = bxca«r + cxab.r + axbc.r,

Hence rabclb = bxea«b + cxab«b + axbc.b.

fU

\

^ bxc axb axe
V:Va X ft, = - T r +—TT^ ^ b«c a-b a-bb»c

a • c ft.
Hence ft x ft, = - ft, - ftg +—rr—

^

° *
, a«bb»c
T

fti >: ftg + fta X fti

" a -

a • b b • c

(a X b) • (b X c) a . b b . c a • c b • b
fti • fta = a.bb«c a«bb»c a>bb*c

9i * G
Hence —r—;— = 1 — ft» • ft,.

a.b b. c ^ ^

Hence
-ft. x ft. + ft. + ft,.

^
1 - fti . fta
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This formula gives the composition of two finite rotations.

If the rotations be infinitesimal ft^ and ftj ^'^e both infinitesi-

mal. Neglecting infinitesimals of the second order the for-

mula reduces to

The infinitesimal rotations combine according to the law of

vector addition. This demonstrates the parallelogram law for

angular velocities. The subject was treated from different

standpoints in Arts. 51 and 60.

Cyclics, Might Tensors, Tonics, and Cyclotonics

129.] If the dyadic <? be a versor it may be written in the

form (4)

<P = ii + cos g' (jj + kk) + sin q (kj — jk).

The axis of rotation is i and the angle of rotation about that

axis is q. Let W be another versor with the same axis and

an angle of rotation equal to q'.

?r = ii + cosj' (i j + kk) -I- sing' (kj — jk).

Multiplying

:

O.W=W . (?> = iicos iq + q'') (jj + ^^)

+ &in iq + q'^ Qui -i^-). (16)

This is the result which was to be expected— the product of

two versors of which the axes are coincident is a versor with

the same axis and with an angle equal to the sum of the

angles of the two given versors.

If a versor be multiplied by itself, geometric and analytic

considerations alike make it evident that

<P2 = ii + cos 2^ (j j + kk) + sin 2 2 (kj - j k),

and (?'' = ii + cosnqQi + kk) + minq (kj -jk).
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On the other hand let 0^ equal jj + kk; and 0^ equal

kj-jk. Then

(2>» = (i i + cos c[0^ + smq 0^\

The product of ii into either 0^ or 0^ is zero and into itself is

ii. Hence
(?» = i i +' (cos 2'

<?i + sin g- 0^y

(P"= ii + cos" 2 <Pi" + ™ cos"~^ q sin g #^"-1 • (?>2 H

The dyadic 0^ raised to any power reproduces itself. 0^= 0^
The dyadic 02 raised to the second power gives the negative

of 01 ; raised to the third power, the negative of 0^ ; raised

to the fourth power, 0^ ; raised to the fifth power, 0^ and so

on (Art. 114). The dyadic 0^ multiplied by 0^ is equal to

0^. Hence

<?*" = i i + cos" q 0^ + n cos"-'^ q sin q 0^

n(n-l) ,
.-i ^- '^, cos

» -
2 2 sm^ <p2 + • •

•

But 0" = ii + cos n q 01 + sia n q 0^.

Equating coefficients of 0i and 0^ in these two expressions

for <?"

n Cn — l") „
cos nq = cos" q —. cos""-* q siUj q + . .

jn—

1

n(n-l){n-'2)
sm.nq= ncos"~'^qsva.q — cos"~''2'sm''2'H- • •

Thus the ordinary expansions for cos wg' and sinwg are

obtained in a manner very similar to the manner in which

they are generally obtained.

The expression for a versor may be generalized as follows.

Let a, b, c be any three non-coplanar vectors ; and a', b', c', the

reciprocal system. Consider the dyadic

= &9.' + Qosq(h'\i' + cc') + sing (cb'-bc'). (17)
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This dyadic leaves vectors parallel to a unchanged. Vectors

in the plane of b and c suffer a change similar to rotation.

Let
r = cos p b + sin p c,

r' = (^ . r = cos (jj + 3') b + sin (^ + 2') c.

This transformation may be given a definite geometrical

interpretation as follows. The vector r, when p is regarded

as a variable scalar parameter, describes an ellipse of which

b and c are two conjugate semi-diameters (page 117). Let

this ellipse be regarded as the parallel projection of the

unit circle

r = cos p i -\- sva. q j.

That is, the ellipse and the circle are cut from the same

cylinder. The two semi-diameters i and j of the circle pro-

ject into the conjugate semi-diameters a and b of the ellipse.

The radius vector r in the ellipse projects into the radius vector

f in the unit circle. The radius vector r' in the ellipse which

is equal to (?• r, projects into a radius vector r' in the circle

such that

f = cos Qj -f- 2') i -f- sin (p -f- q) j.

Thus the vector r in the ellipse is so changed by the applica-

tion oi as a prefactor that its projection f in the unit circle

is rotated through an angle q.

This statement may be given a neater form by making use

of the fact that in parallel projection areas are changed in a

definite constant ratio. The vector f in the unit circle may
be regarded as describing a sector of which the area is to the

area of the whole circle as q\s to 2 tt. The radius vector r

then describes a sector of the ellipse. The area of this sector

is to the area of the whole ellipse as ^ is to 2 tt. Hence the

dyadic applied as a prefactor to a radius vector r in an ellipse

of which b and c are two conjugate semi-diameters advances

that vector through a sector the area of which is to the area of



350 VECTOR ANALYSIS

the whole ellipse as q is to 2ir.^ Such a displacement of the

radius vector r may be called an elliptic rotation through a

sector q from its similarity to an ordinary rotation of which

it is the projection.

Definition : A dyadic of the form

<2> = a a' + cos 2 (bb' + cc') + sin g- (c b' - b c') (17)

is called a cyclic dyadic. The versor is a special case of a

cyclic dyadic.

It is evident from geometric or analytic considerations that

the powers of a cyclic dyadic are formed, as the powers of a

versor were formed, by multiplying the scalar q by the power

to which the dyadic is to be raised.

(?" = a a' + cos nq (b b' + c c') + sin nq (c b' — b c').

If the scalar q is an integral sub-multiple of 2 w, that is, if

27r— = m,
S

it is possible to raise the dyadic <P to such an integral power,

namely, the power m, that it becomes the idemfactor

(P'n = I

may then be regarded as the mth root of the idemfactor.

In like manner if q and 2 ir are commensurable it is possible

to raise to such a power that it becomes equal to the idem-

factor and even if q and 2 tt are incommensurable a power of

may be found which differs by as little as one pleases from

the idemfactor. Hence any cyclic dyadic may be regarded as

a root of the idemfactor.

1 It is evident that fixing the result of the application of * to all radii vectors

in an ellipse practically fixes it for all vectors in the plane of b and c. For any

vector in that plane may be regarded as a scalar multiple of a radius vector of

the ellipse.
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130.] Definition: The transformation represented by the

dyadic
<?> = a ii + S jj + c kk (18)

where a, I, c are positive scalars is called a pure strain. The
dyadic itself is called a right tensor.

A right tensor may be factored into three factors

<? = (aii + jj + kk).(ii + 6j j + kk)#(ii+jj + ckk).

The order in which these factors occur is immaterial. The
transformation

r' = (ii + jj + ckk) . r

is such that the i and j components of a vector remain un-

altered but the k-component is altered in the ratio of e to 1.

The transformation may therefore be described as a stretch or

elongation along the direction k. If the constant c is greater

than unity the elongation is a true elongation : but if c is less

than unity the elongation is really a compression, for the ratio

of elongation is less than unity. Between these two cases

comes the case in which the constant is unity. The lengths

of the k-components are then not altered.

The transformation due to the dyadic (P may be regarded

as the successive or simultaneous elongation of the com-

ponents of r parallel to i, j, and k respectively in the ratios

a to 1, J to 1, c to 1. If one or more of the constants a, h, c

is less than unity the elongation in that or those directions

becomes a compression. If one or more of the constants is

unity, components parallel to that direction are not altered.

The directions i, j, k are called the principal axes of the strain.

Their directions are not altered by the strain whereas, if the

constants a, h, c be different, every other direction is altered.

The scalars a, b, c are known as the principal ratios of

elongation.

In Art. 115 it was seen that any complete dyadic was

reducible to the normal form

0=± Cai'i + hj'j + ck'k)
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where a, h, c are positive constants. This expression may be

factored into the product of two dyadics.

0=± (ai'i' + &j'j' + ck'k') . (i'i + j'j + k'k), (19)

or 0=± (i'i+j'j + k'k) • (a ii + 6 j j + c kk).

The factor i'i+j'j + k'k

which is the same in either method of factoring is a versor.

It turns the vectors i, j, k into the vectors i
',

j ', k'. This

versor may be represented by its vector semi-tangent of

version as

.,. ... , M ixi' + j X j' + k xk'
^^ + ^'^ + ''^ =

l + iTF+r7TkT¥"
The other factor

a i' i' + 6 j' j' + c k' k',

or aii + &jj + ckk

is a right tensor and represents a pure strain. In the first

case the strain has the lines i', j', k' for principal axes: in

the second, i, j, k. In both cases the ratios of elongation are

the same, — a to 1, & to 1, c to 1. If the negative sign occurs

before the product the version and pure strain must have

associated with them a reversal of directions of all vectors in

space— that is, a perversion. Hence

Theorem: Any dyadic is reducible to the product of a

versor and a right tensor taken in either order and a positive

or negative sign. Hence the most general transformation

representable by a dyadic consists of the product of a rota-

tion or version about a definite axis through a definite angle

accompanied by a pure strain either with or without perver-

sion. The rotation and strain may be performed in either

order. In the two cases the rotation and the ratios of elonga-

tion of the strain are the same ; but the principal axes of the

strain differ according as it is performed before or after the
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rotation, either system of axes being derivable from the other

by the application of the versor as a prefactor or postfactor

respectively. ^

If a dyadic be given the product of and its conjugate

is a right tensor the ratios of elongation of which are the

squares of the ratios of elongation of and the axes of which

are respectively the antecedents or consequents of accord-

ing as (?p follows or precedes in the product.

0=± (ai'i + 6i'j + ck'k),

0a= ±(aii' + 6 jj' + ckk'),

(p. <?>^=a2i'i' + 62j'j' + c2k'k', (20)

0a' = a^ii + h^u + c^ls.'k.

The general problem of finding the principal ratios of elonga-

tion, the antecedents, and consequents of a dyadic in its

normal form, therefore reduces to the simpler problem of find-

ing the principal ratios of elongation and the principal axes

of a pure strain.

131.] The natural and immediate generalization of the

right tensor

aii + &jj-l-ckk,

is the dyadic (?> = aaa' + 6bb' + ccc' (21)

where a, b, c are positive or negative scalars and where a, b, c

and a', b', c' are two reciprocal systems of vectors. Neces-

sarily a, b, c and a', b', c' are each three non-coplanar.

Definition : A dyadic that may be reduced to the form

= aa.a,' + hhh' + cee' (21)

is called a faM^
The effect of a tonic is to leave unchanged three non-

coplanar directions a, b, c in space. If a vector be resolved

into its components parallel to a, b, c respectively these

23
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components are stretclied in the ratios a to 1, 5 to 1, c to 1.

If one or more of the constants a, 6, c are negative the com-

ponents parallel to the corresponding vector a, b, c are re-

versed in direction as well as changed in magnitude. The

tonic may be factored into three factors of which each

stretches the components parallel to one of the vectors a, b, c

but leaves unchanged the components parallel to the other

two.

(/>=:(aaa'+ bb' + ccO'(aa' + 6bb' + cc')(aa' + bb'+<?cc').

The value of a tonic is not altered if in place of a, b, c

any three vectors respectively coUinear with them be sub-

stituted, provided of course that the corresponding changes

which are necessary be made in the reciprocal system a', b', c'.

But with the exception of this change, a dyadic which is

expressible in the form of a tonic is so expressible in only

one way if the constants a, 6, c are different. If two of the

constants say & and c are equal, any two vectors coplanar

with the corresponding vectors b and c may be substituted

in place of b and c. If all the constants are equal the tonic

reduces to a constant multiple of the idemfactor. Any three

non-coplanar vectors may be taken for a, b, c.

The product of two tonics of which the axes a, b, c are the

same is commutative and is a tonic with these axes and

with scalar coefficients equal respectively to the products of

the corresponding coefficients of the two dyadics.

<? = aj a a' -H &i b b' -t- Ci c c'

' W = W ' = a^a^2^2J + Why + c-^c^cc'. (22)

The generalization of the cyclic dyadic

a a' -f- cos 2' (b b' + c c') + sin q (c b' — b e')

is (?> = aaa' + 6(bb' + ec')4-c(cb'-bc'), (23)
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where a, b, c are three non-coplanar vectors of which a', b', c'

is the reciprocal system and where the quantities a, i, c, are

positive or negative scalars. This dyadic may be changed

into a more convenient form by determining the positive

scalar p and the positive or negative scalar q (which may

always be chosen between the limits ± tt) so that

h =p cos q

and c=^sin2'. (24)

That is, 2> = + y^z ^ ^a

and tan|2=[|^. (24)'

Then 'V

= aa.a.' + p COS q (bV + cc') + p sin q (cV — h c'). (25)

This may be factored into the product of three dyadics

(?>= (a a a' + bV + c c') • (a a' + ^ b b' + 27 c c') •

{a a' + cos g (b b' + c c') + sin g' (c V — b c')}.

The order of these factors is immaterial. The first is a tonic

which leaves unchanged vectors parallel to b and c but

stretches those parallel to a in the ratio of a to 1. If a is

negative the stretching must be accompanied by reversal

in direction. The second factor is also a tonic. It leaves

unchanged vectors parallel to a but stretches all vectors in

the plane of b and c in the ratio p to 1. The third is a

cyclic factor. Vectors parallel to a remain unchanged; but

radii vectors in the ellipse of which b and c are conjugate

semi-diameters are rotated through a vector such that the

area of the vector is to the area of the whole ellipse as q to

2 TT. Other vectors in the plane of b and c may be regarded

as scalar multiples of the radii vectors of the ellipse.
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Definition : A dyadic which is reducible to the form

= aaa,' + p cos q (b V + cc') + jj sin g (cb' — be')? (25)

owing to the fact that it combines the properties of the

cyclic dyadic and the tonic is called a cyclotonic.

The product of two cyclotonics which have the same three

vectors, a, b, c as antecedents and the reciprocal system

a', b', c' for consequents is a third cyclotonic and is com-

mutative.

(? = aj a a' + j?i cos g-j (b b' + c c') + p^ sin q^ (c b' — b c')

W = a^&2J + p^ cos g'j (bb' + cc') + p^ sin q^ (cb'— be')

0. W= ¥. (P = aia2aa' + i?ii>2Cos (g-j + g-j) (bb' + cc')

+ Pi Pi sin (gi + ga) (c b' - b c'). (26)

Reduction of Dyadics to Canonical Forms

132.] Theorem : In general any dyadic O may be reduced

either to a tonic or to a cyclotonic. The dyadics for which

the reduction is impossible may be regarded as limiting cases

which may be represented to any desired degree of approxi-

mation by tonics or cyclotonics.

From this theorem the importance of the tonic and cyclo-

tonic which have been treated as natural generalizations of

the right tensor and the cyclic dyadic may be seen. The

proof of the theorem, including a discussion of all the

special cases that may arise, is long and somewhat tedious.

The method of proving the theorem in general however is

patent. If three directions a, b, c may be found which are

left unchanged by the application of then must be a

tonic. If only one such direction can be found, there exists

a plane in which the vectors suffer a change such as that due

to the cyclotonic and the dyadic indeed proves to be such.
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The question is to find the directions which are unchanged

by the application of the dyadic 0.

If the direction a is unchanged, then

</>'a=aa (27)

or (<?> - a I) . a = 0.

The dyadic <P — a I is therefore planar since it reduces vectors

in the direction a to zero. In special cases, which are set

aside for the present, the dyadic may be linear or zero. In

any case if the dyadic

— aI

reduces vectors collinear with a to zero it possesses at least

one degree of nullity and the third or determinant of

vanishes.

(0-al)s = O. (28)

Now (page 331) (0 + ¥)^= 0^ + 0^: ¥ + : ¥^ + ¥^.

Hence (</> - al)3 = 0^- a 0^:1 + a^ il^- a^I^

Ij = I and Ig = 1.

But 0:1= 0s

<P2 : I = <^>25.

Hence the equation becomes

a^-a^0s + a 0^s -0^ = 0. (29)

The value of a which satisfies the condition that

•2i, = aa.

is a solution of a cubic equation. Let x replace a. The

cubic equation becomes

x^-x^0s + x 0^a -<l>s = 0. (29)'
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Any value of x which satisfies this equation will be such

that

(i0-xl\ = Q. (28)'

That is to say, the dyadic ^ — xl is planar. A vector per-

pendicular to its consequents is reduced to zero. Hence

leaves such a direction unqhanged. The further discussion

of the reduction of a dyadic to the form of a tonic or a cyclo-

tonic depends merely upon whether the cubic equation in x

has one or three real roots.

133.] Theorem : If the cubic equation

x^-x^ 0S + X 02S -0s = O (29)'

has three real roots the dyadic may in general be reduced

to a tonic.

For let x = a, x = b, x = c

be the three roots of the equation. The dyadics

0-aI, 0-11, 0-cI

are in general planar. Let a, b, c be respectively three

vectors drawn perpendicular to the planes of the consequents

of these dyadics.

C0-aI).a. = O,

((?-JI).b = 0, (30)

(<^> - c I) . e = 0.

Then <? • a = a a,

(?>.b = 6b, (30)'

'0 . C — CO.

If the roots a, h, c are distinct the vectors a, b, c are non-

coplanar. For suppose

c = ma, + nh

(0 — cl) . (ma. + nh) = 0,
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m (P«a — wica + n (^'b — jicb = 0.

But (^•a = fta, (?.b=6b.

Hence m (a — c) a + m (& — c) b = 0,

and m (a — c) = 0, w (b — c) = 0.

Hence m = or a = c, ti = or 5 = c.

Consequently if the vectors a, b, c are coplanar, the roots are

not distinct; and therefore if the roots are distinct, the

vectors a, b, c are necessarily non-coplanar. In case the roots

are not distinct it is still always possible to choose three

non-coplanar vectors a, b, c in such a manner that the equa-

tions (30) hold. This being so, there exists a system a', b', c'

reciprocal to a, b, c and the dyadic which carries a, b, c into

a a, 2) b, c c is the tonic

= az.&' + &bb' -1-ccc.
''

Theorem : If the cubic equation

x^-x^^s + «> ^-is - <^3 = (29)'

has one real root the dyadic may in general be reduced to

a cyclotonic.

The cubic equation has one real root. This must be posi-

tive or negative according as (Pg is positive or negative. Let

the root be a. Determine a perpendicular to the plane of

the consequents of <P — a I.

(<?> — « I) . a = 0.

Determine a' also so that

a' •(<?>- a I) =

and let the lengths of a and a' be so adjusted that a' • a= l.

This cannot be accomplished in the special case in which a
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and a' are mutually perpendicular. Let b be any vector in

the plane perpendicular to a'.

a' • ((2> - a I) . b = 0.

Hence (#— al)»b is perpendicular to a'. Hence (?«b is

perpendicular to a'. In a similar manner 0^> b, 0^''b, and
(p-i

. b, <?*"^ • b, etc., will all be perpendicular to a' and lie in

one plane. The vectors • b and b cannot be parallel or

would have the direction b as well as a unchanged and

thus the cubic would have more than one real root.

The dyadic changes a, <P • b, b into <P • a, (^^ • b, <?• b re-

spectively. The volume of the parallelepiped

\_0.a. (?2 . b . b] = <?>3 [a 0-la b]. (31)

But • a. = aa,.

Hence a a- ((?>2. b) x (</>• b) = (/>3a. (#.b) x b. (31)'

The vectors 0^-'b, (? • b, b all lie in the same plane. Their

vector products are parallel to a' and to each other. Hence

a ((?2 . b) X (<P . b) = (Pg 0-hx}). (31)"

Inasmuch as a and 0^ have the same sign, let

^2 = a-i 0y
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Lay off from a common origin the vectors

b, bj^, bg, etc., b_i, b_2> etc.

Since <P is not a tonic, that is, since there is no direction in

the plane perpendicular to a' which is left unchanged by

these vectors b„ pass round and round the origin as m takes

on all positive and negative values. The value of n must

therefore lie between plus one and minus one. Let

n = cos q. (36)

Then b_i + b^ = 2 cos g- b.

Determine c from the equation

bj = cos 2 b + sin q c.

Then b_i = cos g b — sin g' c.

Let a', b', c' be the reciprocal system of a, b, c. This is pos-

sible since a' was so determined that a' • a = 1 and since

a, b, c are non-coplanar. Let

S*" = cos g (b b' + c') + sin g (c b' — b c').

Then ST . a = 0, ?F . b = b^, r . b_i = b.

Hence (a a a' + ^ ?r) . a = a &= ' a,

(aaa'+i? SO .b=^ bi^= <?> • b,

(a aa' + 2? ?P") • h_i =i? b 1 (P - b.^.

The dyadic a &&' + pW changes the vectors a, b and b_j into

the vectors (P . a, (P • b, and • b_^jfigEectiyely.^^Hence_^

= {aa.9l + p ¥) = a aa! + p cos q (bV + cc')

+ p sin q (cV — be').

The dyadic in case the cubic equation has only one real

root is reducible except in special cases to a cyclotonic.

The theorem that a dyadic in general is reducible to a tonic

or cyclotonic has therefore been demonstrated.
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134.] There remain two cases ^ in which the reduction

is impossible, as can be seen by looking over the proof. In

the first place if the constant n used in the reduction to cyclo-

tonio form be ± 1 the reduction falls through. In the second

place if the plane of the antecedents of

0-aI

and the plane of the consequents are perpendicular the

vectors a and a' used in the reduction to cyclotonic form are

perpendicular and it is impossible to determine a' such that

a • a' shall be unity. The reduction falls through.

If « = ± 1, b_i + bi = ± 2 b.

Let b_i + bi = 2b.

Choose c = bi — b = b — b_j.

Consider the dyadic ¥ = a a a' + p (b b' + c c') + jp cV

¥'& — asi=0'a,, \S .

W'e=pc=p})^— p'b= • 0.

Hence = a aa,' + p (bh' + cc') + p ehy (37)

The transformation due to this dyadic may be seen best by

factoring it into three factors which are independent of the

order or arrangement

(P=(aaa' + bb' + cc') • {aa' + ^(bb' + cc')}

• (a a' + b b' + c c' + c b').

1 In these cases it will be seen that the cubic equation has three real roots.

In one case two of them are equal and in the other case three of them. Thus

these dyadics may be regarded as limiting cases lying between the cyclotonic in

which two of the roots are imaginary and the tonic in which all the roots are real

and distinct. The limit may be regarded as taking place either by the pure

imaginary part of the two imaginary roots of the cyclotonic becoming zero or by

two of the roots of the touic approaching each other.
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The first factor represents an elongation in the direction a in a

ratio a to 1. The plane of b and c is undisturbed. The
second factor represents a stretching of the plane of b and c in

the ratio jj to 1. The last factor takes the form

I + cV.

(I + cb') • a3a = iea,

(I + cb') • icb = ajb + xa,

(I + c b') • as c = a; c.

A dyadic of the form I + cb' leaves vectors parallel to a and c

unaltered. A vector x b parallel to b is increased by the vec-

tor c multiplied by the ratio of the vector a; b to b. In other

words the transformation of points in space is such that the

plane of a and c remains fixed point for point but the points

in planes parallel to that plane are shifted in the direction c

by an amount proportional to the distance of the plane in

which they lie from the plane of a and c.

Definition : A dyadic reducible to the form

I + cb'

is called a shearing dyadic or shearer and the geometrical

transformation which it causes is called a shear. The more

general dyadic

<?> = aaa' + i?(bb' + cc') + cb' (37)

will also be called a shearing dyadic or shearer. The trans-

formation to which it gives rise is a shear combined with

elongations in the direction of a and is in the plane of b and c.

If n = —1 instead of n = +1, the result is much the same.

The dyadic then becomes

<?> = aaa'-^ (bb'-l-cc')-cb' (37)'

<?>= (a aa' + bb' + ce') • {aa' -j? (bV + ce')} • (I + cb').
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The factors are the same except the second which now repre-

sents a stretching of the plane of b and c combined with a

reversal of all the vectors in that plane. The shearing dyadic

then represents an elongation in the direction a, an elonga-

tion combined with a reversal of direction in the plane of

b and c, and a shear.

Suppose that the plane of the antecedents and the plane of

the consequents of the dyadic 0^al are perpendicular. Let

these planes be taken respectively as the plane of j and k and

the plane of i and j k. The dyadic then takes the form

0-al = Aii + Bii + C kXj+ D k j.

The coefficient B must vanish. For otherwise the dyadic

Q-al-Bl = (-Bi + Ai-{-C'k)i + 'k{DX-B'k)

is planar and the scalar a H- ^ is a root of the cubic equation.

With this root the reduction to the form of a tonic may be

carried on as before. Nothing new arises. But if B vanishes

a new case occurs. Let - ,

?'=(?-aI = ^ji-f-CkX+^kj.

This may be reduced as follows to the form

ab' + bc'

where a • b' = a • c' = b • c' = and b • b' = 1.

Square ¥ W^ = AD ]s.\ = ac'.

Hence a must be chosen parallel to k ; and c', parallel to i.

The dyadic W may then be transformed into

'^-^H^^Y^^
Then (j^ =ADk, y=21f^

b = ^ j e' = i.
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With this choice of a, b, b', c' the dyadic W reduces to the

desired form ab'+ be' and hence the dyadic <? is reduced to

(P = al + ab' + bc' (38)

or (^ = aaa' + abb' + ace' + ab' + be'.

This may be factored into the product of two dyadics the

order of which is immaterial.

<?* = al.(l + ab' + bc').

The first factor al represents a stretching of space in all

directions in the ratio a to 1. The second factor

i2 = I + ab' + bc'

represents what may be called a complex shear. For

r'= I«r+ ab'«r+ be'«r= r + ab'«r + be'«r.

If r is parallel to a it is left unaltered by the dyadic Q. If

r is parallel to b it is changed by the addition of a term

which is in direction equal to a and in magnitude propor-

tional to the magnitude of the vector r. In like manner

if r is parallel to c it is changed by the addition of a term

which in direction is equal to b and which in magnitude is

proportional to the magnitude of the vector r.

J2«a;b = (I + ab' + be')«a3b= asb + aia

j2.a;e = (I + ab' + be') • a;e = xc + x'b.

Definition : A dyadic which may be reduced to the form

# = al-l-ab' + bc' (38)

is called a complex shearer.

The complex shearer as well as the simple shearer men-

tioned before are limiting cases of the cyclotonic and tonic

dyadics.
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135.] A more systematic treatment of the various kinds

of dyadics which may arise may be given by means of the

Hamilton-Cayley equation

0^-0^0-^+0^^0-0^1 = (39)

and the cubic equation in x

x^- 0sx^+ 0^sx- 0^ = Q. (29)'

If a, 6, c are the roots of this cubic the Hamilton-Cayley

equation may be written as

(<?-aI).((^>-5I).((Z>-cI) = 0. (40)

If, however, the cubic has only one root the Hamilton-Cayley

equation takes the form

(i0-al).(^0^-2pcosq0+p^T)=O. (41)

In general the Hamilton-Cayley equation which is an equa-

tion of the third degree in is the equation of lowest degree

which is satisfied by 0. In general therefore one of the above

equations and the corresponding reductions to the tonic or

cyclotonic form hold. In special cases, however, the dyadic

may satisfy an equation of lower degree. That equation

of lowest degree which may be satisfied by a dyadic is called

its characteristic equation. The following possibilities occur.

I. (<P-aI).((2>-6I).(<?-cI) = 0.

11. {0-al)'{0^-'2,pQosq0 + pn) = (i.

III. (!?-aI).(«^>- 61)2 = 0.

IV. ((?-aI).((P-6I) = 0.

V. ((?-aI)8 = 0.

VI. (<P-aI)2 = 0.

VII. (<P-aI) = 0.
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In the first case the dyadic is a tonic and may be reduced

to the form
(P = aaa' + &l)b' + ccc'.

In the second case the dyadic is a cyclotonic and may be

reduced to the form

= aa.&' + p cos q (hh' + cc') + p sin g' (cb' — b e').

In the third case the dyadic is a simple shearer and may be

reduced to the form

= aa.&' + h (bb' + cc') + cb'.

In the fourth case the dyadic is again a tonic. Two of the

ratios of elongation are the same. The following reduction

may be accomplished in an infinite number of ways.

<P = aaa' + 6 (bb' + cc')-

In the fifth case the dyadic is a complex shearer and may be

so expressed that

0= al + ab' + bc'.

In the sixth case the dyadic is again a simple shearer which

may be reduced to the form

<? = al + cb'=a (aa' + bb' + cc') + cb'.

In the seventh case the dyadic is again a tonic which may be

reduced in a doubly infinite number of ways to the form

= al = a (aa' + bb' + cc').

These seven are the onlj'^ essentially different forms which a

dyadic may take. There are then only seven really different

kinds of dyadics— three tonics in which the ratios of elonga-

tion are all different, two alike, or all equal, and the cyclo-

tonic together with three limiting cases, the two simple and

the one complex shearer.



368 VECTOR ANALYSIS

Summary of Chapter VI

The transformation due to a dyadic is a linear homogeneous

strain. The dyadic itself gives the transformation of the

points in space. The second of the dyadic gives the trans-

formation of plane areas. The third of the dyadic gives the

ratio in which volumes are changed.

r'=<P.r, s'=(?2'S, v'=(l>^v.

The necessary and sufficient condition that a dyadic repre-

sent a rotation about a definite axis is that it be reducible to

the form
<?> = i'i + j'j + k'k (1)

or that 0.0g = l 0^ = + l (2)

or that 0.0g = l (2>3 >

The necessary and sufficient condition that a dyadic repre-

sent a rotation combined with a transformation of reflection

by which each figure is replaced by one symmetrical to it is

that

<? = -(i'i-i-j'j + k'k) (ly

or that (P . <?o = I> <P3 = - 1

or that 0.0g = I, (Pg < 0. (3)

A dyadic of the form (1) is called a versor ; one of the form

(1)', a perversor.

If the axis of rotation of a versor be chosen or the i-axis

the versor reduces to

<P = 11 -I- cos g' (j j + kk) -1- sin q (kj — jk) (4)

or (P = 11 -I- cos g' (I — 11) -t- sin 2 I X 1. (5)

If any unit vector a is directed along the axis of rotation

^ = aa + cos g (I — a a) -H sin 2 I X a (6)

The axis of the versor coincides in direction with — 0^.
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If a vector be drawn along the axis and if the magnitude of

the vector be taken equal to the tangent of one-half the angle

of rotation, the vector determines the rotation completely.

This vector is called the vector semi-tangent of version.

^ = rT^ a.a = tan='^^ (9)

In terms of Q the versor may be expressed in a number of

wajrs.

a-a
' "V a-a; ' VoTa

(10)

or (2> = (I-f-I xa)-(I-IxQ)-i (10)'

^ a a + (I + 1 X a)2^=
l + ftft

(!«)"

^^(i-a.ft)i + 2aft+2ixft
i + a-a ^ ^

If a is a unit vector a dyadic of the form

<P = 2aa-I (11)

is a biquadrantal versor. Any versor may be resolved into

the product of two biquadrantal versors and by means of

such resolutions any two versors may be combined into

another. The law of composition for the vector semi-tangents

of version is

tti -I- ttg -f- ttg X fti^~
l-tti-tta

A dyadic reducible to the form

= 9.a! + cos 2 (bb' + cc') + sin q (cb' - be') (17)

is called a cyclic dyadic. It produces a generalization of

simple rotation— an elliptic rotation, so to speak. The pro-

21
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duct of two cyclic dyadics which have the same antecedents

a, b, c and consequents a' b' c' is obtained by adding their

angles q. A cyclic dyadic may be regarded as a root of the

idemfactor. A dyadic reducible to the form

= aii + 6jj + ckk (18)

where a, h, c are positive scalars is called a right tensor. It

represents a stretching along the principal axis i, j, k in the

ratio a to 1, 6 to 1, c to 1 which are called the principal ratios

of elongation. This transformation is a pure strain.

Any dyadic may be expressed as the product of a versor,

a right tensor, and a positive or negative sign.

(? = ± (ai'i' + bj'j' + c k'k') (i' i + j'j + k'k)

or <P= ± (i'i + j'j + k'k).(aii + 6jj + ckk). (19)

Consequently any linear homogeneous strain may be regarded

as a combination of a rotation and a pure strain accompanied

or unaccompanied by a perversion.

The immediate generalizations of the right tensor and the

cyclic dyadic is to the tonic

= aa,a.' + bh\>' + ccc' (21)
and cyclotonic

<? =aaa' + 6(bb' + cc') + c(cb'-be) (23)

or (^ = aaa' +^ cos 2 (bb' + cc') + i'sin2'(cb' — be') (25)

where p = + ^"p^fT^ and tan ^ 2 = 7- (24)'

Any dyadic in general may be reduced either to the form

(21), and is therefore a tonic, or to the form (25), and is

therefore a cyclotonic. The condition that a dyadic be a

tonic is that the cubic equation

a;3 _ 0gx^ + 0^sx- 0^ = (29)'
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shall have three real roots. Special cases in which the

reduction may be accomplished in more ways than one arise

when the equation has equal roots. The condition that a

dyadic be a cyclotonic is that this cubic equation shall have

only one real root. There occur two limiting cases in which

the dyadic cannot be reduced to cyclotonic form. In these

cases it may be written as

(2* = aaa'+i?(bb' + cc') + cb' (37)

and is a simple shearer, or it takes the form

= al + 2ih' + ho' (38)

and is a complex shearer. Dyadics may be classified accord-

ing to their characteristic equations

((P-aI).((P-6I).((?-cI) = tonic

((? - a I) • ((p2 _ 2 ^ cos 2 <P + ^2 1) ^ cyclotonic

(^0 - aT) ' C0 — biy = simple shearer

((2> — a I) . (<^> — 6 1) = special tonic

(^<P — aiy = complex shearer

(<^ — « 1)2 = special simple shearer

(^ — al) = special tonic.



CHAPTER VII

MISCELLANEOUS APPLICATIONS

Quadric Surfaces

136.] If <P be any constant dyadic the equation

r • • r = const. (1)

is quadratic in r. The constant, in case it be not zero, may

be divided into the dyadic <P and hence the equation takes

the form
r . (P . r = 1, (ly

or r . <P - r = 0. (2)

The dyadic <P may be assumed to be self-conjugate. For if

ST is an anti-self-conjugate dyadic, the product r • 2P" • r is

identically zero for all values of r. The proof of this state-

ment is left as an exercise. By Art. 116 any self-conjugate

dyadic is reducible to the form

If x = xi + yi-\- »k,

r . <? . r = ±— ± — ± —

.

(4:')

a^ h^ c^ ^ ''

Hence the equation r • (? - r = 1

represents a quadric surface real or imaginary.

The different cases which arise are four in number. If the

signs are aU positive, the quadric is a real ellipsoid. If one

sign is negative it is an hyperboloid of one sheet; if two are
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negative, a hyperboloid of two sheets. If the three signs are

all negative the quadric is imaginary. In like manner the

equation
r • <P . r =

is seen to represent a cone which may be either real or

imaginary according as the signs are different or all alike.

Thus the equation

r • (? • r = const.

represents a central quadric surface. The surface reduces to

a cone in case the constant is zero. Conversely any central

quadric surface may be represented by a suitably chosen self-

conjugate dyadic in the form

r • <? • r = const.

This is evident from the equations of the central quadric

surfaces when reduced to the normal form. They are

x^ y^ z^
± -r ± — ± — = const.

a^ 0^ c^

i i 11 k k
The corresponding dyadic <P is (?=±—5±-r-± —r-

.

a^ 0^ c^

The most general scalar expression which is quadratic in

the vector r and which consequently when set equal to a con-

stant represents a quadric surface, contains terms like

r • r, (r • a) (b • )r', r • c, d • c,

where a, b, c, d, e are constant vectors. The first two terms

are of the second order in r ; the third, of the first order ; and

the last, independent of r. Moreover, it is evident that these

four sorts of terms are the only ones which can occur in a

scalar expression which is quadratic in r.

But r • r = r • I • r,

and (r • a) (b • r) = r • a b • r.
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Hence the most general quadratic expression may be reduced

to

T'0'T + r'A + C = O,

where <? is a constant dyadic, A a constant vector, and

a constant scalar. The dyadic may be regarded as self-

conjugate if desired.

To be rid of the linear term r • A, make a change of origin

by replacing r by r' — t.

(r' - t) . (? • (r' - t) + (r' - t) . A + C =

l'.0.T'-t'0-T' — T''0-t + t'0't

+ r'.A-t-A+C = 0.

Since <? is self-conjugate the second and third terms are

equal. Hence

r' . (? . r' -I- 2 r' . (i A - <P - t) + C" = 0.

If now is complete the vector t may be chosen so that

^A=<P.t ort = |
(P-I. A.

Hence the quadric is reducible to the central form

r' . (P . r' = const.

In case <P is incomplete it is wmplanar or Mwilinear because

is self-conjugate. If A lies in the plane of (P or in the line

of as the case may be the equation

iA = (?).t

is soluble for t and the reduction to central form is still pos-

sible. But unless A is so situated the reduction is impossible.

The quadric surface is not a central surface.

The discussion and classification of the various non-central

quadrics is an interesting exercise. It will not be taken up

here. The present object is to develop so much of the theory
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of quadric surfaces as -will be useful in applications to mathe-

matical physics with especial reference to non-isotropic media.

Hereafter therefore the central quadrics and in particular the

ellipsoid will be discussed.

137.] The tangent plane may be found by differentiation.

r • (P . r = 1.

dr ' (P 'T + i • dT — 0.

Since is self-conjugate these two terms are equal and

dx-0-T = O. (5)

The increment c? r is perpendicular to (^J • r. Hence (? • r is

normal to the surface at the extremity of the vector r. Let

this normal be denoted by N and let the unit normal be n.

H = 'T (6)

.

T

-T
n =

V(<P . r) • (<P . r) Vt ' 0^
' r*

Let p be the vector drawn from the origin perpendicular to

the tangent plane, p is parallel to n. The perpendicular

distance from the origin to the tangent plane is the square

root of p • p. It is also equal to the square root of r • p.
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On page 108 it was seen that the vector which has the direc-

tion of the normal to a plane and which is in magnitude equal

to the reciprocal of the distance from the origin to the plane

may be taken as the vector coordinate of that plane. Hence

the above equation shows that <? • r is not merely normal to

the tangent plane, but is also the coordinate of the plane.

That is, the length of (? • r is the reciprocal of the distance

from the origin to the plane tangent to the ellipsoid at

the extremity of the vector r.

The equation of the ellipsoid in plane coordinates may be

found by eliminating r from the two equations.

i (P-r = N.

Hence r . (2> . r = W .
<2>-i

. .
0-i . N = N • 0'^ • N.

Hence the desired equation is

N.<^>-i.W = l. (8)

a^ 0^ c^

Let r = a;i + yj + 2;k,

and "S = ui + V} + wis.,

where m, v, w are the reciprocals of the intercepts of the

plane IT upon the axes i, j, k. Then the ellipsoid may be

written in either of the two forms familiar in Cartesian

geometry.

or N.(?-i.N = a2it2 + j2^2 + g2^2 = i. (10)
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138.] The locus of the middle points of a system of

parallel chords in an ellipsoid is a plane. This plane is

called the diametral plane conjugate with the system of

chords. It is parallel to the plane drawn tangent to the

ellipsoid at the extremity of that one of the chords which

passes through the center.

Let r he any radius vector in the ellipsoid. Let s be the

vector drawn to the middle point of a chord parallel to a.

Let r = s + a; a.

If r is a radius vector of the ellipsoid

r . (P . r = (s + a; a) • (P • (s + a; a) = 1.

Hence s + (?>.s + 2a;s.<P.a + a;2a.<?>-a = l.

Inasmuch as the vector s bisects the chord parallel to a the

two solutions of x given by this equation are equal in mag-

nitude and opposite in sign. Hence the coefficient of the

linear term x vanishes. ,. „
s • (P - a = 0.

Consequently the vector s is perpendicular to <P • a. The

locus of the terminus of s is therefore a plane passed through

the center of the ellipsoid, perpendicular to (/> • a, and pai'allel

to the tangent plane at the' extremity of a.

If b is any radius vector in the diametral plane conjugate

b • (P • a = 0.

The symmetiy of this equation shows that a is a radius

vector in the plane conjugate with b. Let c be a third radius

vector in the ellipsoid and let it be chosen as the line of

intersection of the diametral planes conjugate respectively

with a and b. Then
a . (? . b = 0,

b . <P . c = 0, (11)

c . (2> . a = 0.
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The vectors a, b, c are changed into <P • a, <P • b, ^ • c by

the dyadic 0. Let

&> = •&, b' = <P • b, e' = ' c.

The vectors a', b', c' form the system reciprocal to a, b, c.

For a . a' = a . # • a = 1, b • b' = b • (P • b = 1,

c . c' = c • <P • c = 1,

and a.b' = a.<P.b = 0, b.c' = b.<?>.c = 0,

c • a' = c • (P • a = 0.

The dyadic may be therefore expressed in the forms

= a' a' + b'b' + c'c', (12)

and (P~^ = aa + bb + cc.

If for convenience the three directions a, b, c, be called a

system of three conjugate radii vectors, and if in a similar

manner the three tangent planes at their extremities be called

a system of three conjugate tangent planes, a number of

geometric theorems may be obtained from interpreting the

invariants of 0. A system of three conjugate radii vectors

may be obtained in a doubly infinite number of ways.

The volume of a parallelepiped of which three concurrent

edges constitute a system of three conjugate radii vectors is

constant and equal in magnitude to the rectangular parallele-

piped constructed upon the three semi-axes of the ellipsoid.

For let a, b, c be any system of three conjugate axes.

)-i — aa + bb + cc.

The determinant or third of 0~^ is an invariant and inde-

pendent of the form in which is expressed.

(pj-i = [abc]2.
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But if 0-^ = a^ii + b^jj + c^^K

Hence [a b c] = ahc.

This demonstrates the theorem. In like manner by inter-

preting (Pj, 0^\ and 0a it is possible to show that:

The sum of the squares of the radii vectors drawn to an

ellipsoid in a system of three conjugate directions is constant

and equal to the sum of the squares of the semi-axes.

The volume of the parallelopiped, whose three concurrent

edges are in the directions of the perpendiculars upon a system

of three conjugate tangent planes and in magnitude equal to

the reciprocals of the distances of those planes from the

center of the ellipsoid, is constant and equal to the reciprocal

of the parallelopiped constructed upon the semi-axes of the

ellipsoid.

The sum of the squares of the reciprocals of the three per-

pendiculars dropped from the origin upon a system of three

conjugate tangent planes is constant and equal to the sum of

the squares of the reciprocals of the semi-axes.

If i, j, k be three mutually perpendicular unit vectors

<p5 = i.<^>.i+j.<?>.j + k.(Z>.k,

0f^ = i .
<p-i

. i -i- j .
(^>-i

. j -I- k .
(?*-i

. k.

Let a, b, c be three radii vectors in the ellipsoid drawn

respectively parallel to i, j, k.

a- <p.a = b. <?>.b = c. <?.c = l.

i.(?.i \ ' '\ k.<?>.k
Hence Os = :^ H ,—s—r H ;;

But the three terms in this expression are the squares of the

reciprocals of the radii vectors drawn respectively in the i, j,

k directions. Hence

:



380 VECTOR ANALYSIS

The sum of the squares of the reciprocals of three mutually

perpendicular radii vectors in an ellipsoid is constant. And
in a similar manner : the sum of the squares of the perpen-

diculars dropped from the origin upon three mutually perpen-

dicular tangent planes is constant.

139.] The equation of the polar plane of the point deter-

mined by the vector a is ^

s • <Z> . a = 1. (13)

For let s be the vector of a point in the polar plane. The

vector of any point upon the line which joins the terminus of

8 and the terminus of a is

yi + xs,

x + y

If this point lies upon the surface

yi + xB. ^ ys + x&

x-\- y x + y

(x + yy (x + yy (x + yy

If the terminus of s lies in the polar plane of a the two values

of the ratio x:y determined by this equation must be equal

in magnitude and opposite in sign. Hence the term vaxy
vanishes.

Hence s • (P • a = 1

is the desired equation of the polar plane of the terminus

of a.

Let a be replaced by z a. The polar plane becomes

s • ' z^ — 1,

1
or 8 . ^ - a = - •

z

1 It is evidently immaterial whether the central qnadric determined by be

leal or imaginary, ellipsoid or byperboloid.
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When 2 increases the polar plane of the terminus of a a

approaches the origin. In the limit when z becomes infinite

the polar plane becomes

s . (? . a = 0.

Hence the polar plane of the point at infinity in the direction

a is the same as the diametral plane conjugate with a. This

statement is frequently taken as the definition of the diame-

tral plane conjugate with a. In case the vector a is a radius

vector of the surface the polar plane becomes identical with

the tangent plane at the terminus of a. The equation

B ' • & = 1 ors-N = l

therefore represents the tangent plane.

The polar plane may be obtained from another standpoint

which is important. If a quadric Q and a plane F are given,

Q = T -0 'T-1 =

and P=r.c-C=0,
the equation (r • <P • r — 1) + A (r • c — C)^ =

represents a quadric surface which passes through the curve

of intersection of Q and F and is tangent to Q along that

curve. In like manner if two quadrics Q and Q' are given,

Q = i . (P-r-1 =

Q'=T' <P' 'T-1 = 0,

the equation (r • -1 — 1) + k(i • 0' •x-l) =

represents a quadric surface which passes through the curves

of intersection of Q and Q' and which cuts Q and Q' at no

other points. In case this equation is factorable into two

equations which are linear in r, and which consequently rep-

resent two planes, the curves of intersection of Q and Q'

become plane and lie into those two planes.
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If A is any point outside of tlie quadric and if all the tangent

planes which pass through A are drawn, these planes envelop

a cone. This cone touches the quadric along a plane curve—
the plane of the curve being the polar plane of the point A.

For let a be the vector drawn to the point A. The equation

of any tangent plane to the quadric is

s . (2> . r = 1.

If this plane contains A, its equation is satisfied by a. Hence

the conditions which must be satisfied by r if its tangent

plane passes through A are

a . (P • r = 1,

r . 'T = l.

The points r therefore lie in a plane r • (<? • a) = 1 which

on comparison with (13) is seen to be the polar plane of A.

The quadric which passes through the curve of intersection

of this polar plane with the given quadric and which touches

the quadric along that curve is

(t . . t -V) + h (a. . . r -ly = Q.

If this passes through the point A,

(a . (P . a - 1) + A (a . (P . a - 1)2 rzr 0.

Hence (r • <P t — 1) (a . (P . a — 1) — (a • (2> . r — 1)2 = 0.

By transforming the origin to the point A this is easily seen

to be a cone whose vertex is at that point.

140.] Let be any self-conjugate dyadic. It is expres-

sible in the form
= Aii + Bu + C\ils.

where A, B, C are positive or negative scalars. Further-

more let A<B< C

- BI = QC - B) kk - (iB - A^ ii.
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Let V C-B k = c and VB-A i = a.

Then (P-£I = cc-aa= ^ l(c+ a)(o-a)+(c-a)(c+a) }.

Let c + a = p and c — a = q.

Then <P = 51 + ^(p q + q p). (14)

The dyadic has been expressed as the sum of a constant

multiple of the idemfactor and one half the sum

p q + q p.

The reduction has assumed tacitly that the constants A, B, C
are different from each other and from zero.

This expression for is closely related to the circular

sections of the quadric surface

r . <P . r = 1.

Substituting the value oi 0, x • > t = 1 becomes

B I ' T + T • -p q«r = l.

Let r - p = 71

be any plane perpendicular to p. By substitution

B I ' T + n q.r — 1 = 0.

This is a sphere because the terms of the second order all

have the same coefficient B. If the equation of this sphere

be subtracted from that of the given quadric, the resulting

equation is that of a quadric which passes through the inter-

section of the sphere and the given quadric. The difference

q • r (r • p — ») = 0.

Hence the sphere and the quadric intersect in two plane

curves lying in the planes

q • r = and r • p = ».
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Inasmuch as these curves lie upon a sphere they are circles.

Hence planes perpendicular to p cut the quadric in circles.

In like manner it may be shown that planes perpendicular to

q cut the quadric in circles. The proof may be conducted as

follows

:

^r»r + r'p q«r = l.

If r is a radius vector in the plane passed through the center

of the quadric perpendicular to p or q, the term r • p q • r van-

ishes. Hence the vector r in this plane satisfies the equation

5 r • r = l

and is of constant length. The section is therefore a circular

section. The radius of the section is equal in length to the

mean semi-axis of the quadric.

For convenience let the quadric be an ellipsoid. The con-

stants A, B, are then positive. The reciprocal dyadic 0~^

may be reduced in a similar manner.

^ , i i i i
Is k

A £ G

B \B J \A bJ
11.

Let f = /i-4k and d = '/l-ii.

Then <p-i--i-I = ff-dd =
|
j(f + d)(f-d)

-f-(f-d)(f-}-d)|

Let f -I- d = u and f — d = v.

Then 0-^ = ^1 + 1 (vlv + yu). (15)B A
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The vectors u and v are connected intimately with the cir-

cular cylinders which envelop the ellipsoid

r . (P . r = 1 or N • (p-i . N = 1.

For - N . N + N . u V . W = 1.

If now N be perpendicular to u or v the second term, namely,

N • u V • N, vanishes and hence the equation becomes

N . N = ^.

That is, the vector N is of constant length. But the equation

N-u =

is the equation of a cylinder of which the elements and tan-

gent planes are parallel to u. If then N • N is constant the

cylinder is a circular cylinder enveloping the ellipsoid. The

radius of the cylinder is equal in length to the mean semi-axis

of the ellipsoid.

There are consequently two planes passing through the

origin and cutting out circles from the ellipsoid. The normals

to these planes are p and q. The circles pass through the

extremities of the mean axis of the ellipsoid. There are also

two circular cylinders enveloping the ellipsoid. The direction

of the axes of these cylinders are u and v. Two elements of

these cylinders pass through the extremities of the mean axis

of the ellipsoid.

These results can be seen geometrically as follows. Pass

a plane through the mean axis and rotate it about that

axis from the major to the minor axis. The section is an

ellipse. One axis of this ellipse is the mean axis of the

ellipsoid. This remains constant during the rotation. The

other axis of the ellipse varies in length from the major to the

mmor axis of the ellipsoid and hence at some stage must pass

through a length equal to the mean axis. At this stage of

25
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the rotation the section is a circle. In like manner consider

the projection or shadow of the ellipsoid cast upon a plane

parallel to the mean axis by a point at an infinite distance

from that plane and in a direction perpendicular to it. As the

ellipsoid is rotated about its mean axis, from the position in

which the major axis is perpendicular to the plane of projec-

tion to the position in which the minor axis is perpendicular

to that plane, the shadow and the projectiug cylinder have the

mean axis of the ellipsoid as one axis. The other axis changes

from the minor axis of the ellipsoid to the major and hence at

some stage of the rotation it passes through a value equal to

the mean axis. At this stage the shadow and projecting

cylinder are circular.

The necessary and sufficient condition that r be the major

or minor semi-axis of the section of the ellipsoid r • (P • r = 1

by a plane passing through the center and perpendicular to a

is that a, r, and <P • r be coplanar.

Let r . <P . r = 1

and r . a = 0.

Differentiate : rf r • <P - r = 0,

£?r • a = 0.

Furthermore rf r • r = 0,

if r is to be a major or minor axis of the section ; for r is a

maximum or a mininum and hence is perpendicular to dr.

These three equations show that a, r, and • r are all ortho-

gonal to the same vector dr. Hence they are coplanar.

[a r (?> . r] = 0. (16)

Conversely if [a r <P • r] = 0,

dr may be chosen perpendicular to their common plane.

a r • r = 0.
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Hence r is a maximum or a minitium and is one of tlie prin-

cipal semi-axes of the section perpendicular to a.

141.J It is frequently an advantage to write the equation

of an ellipsoid in the form

r . ?r2 . r = 1, (17)

instead of r • <P • r = 1.

This may be done ; because if

. ii jj kk

W = ii+il + ^-^
(18)

a c

«

is a dyadic such that W^ is equal to 0. W may be regarded as

a square root of and written as 0^. But it must be re-

membered that there are other square roots of O — for

example,

ii jj kk_+
a c

and ii_U_!ii.
a c

For this reason it is necessary to bear in mind that the square

root which is meant by <?* is that particular one which has

been denoted by W.

The equation of the ellipsoid may be written in the form

r . W ' r . r = 1,

or '(?r.r). (?P'-r) = l.

Let r' be the radius vector of a unit sphere. The equation of

the sphere is

r' - r' = 1.
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If r' = W'Tit becomes evident that an ellipsoid may be

transformed into a unit sphere by applying the operator W
to each radius vector r, and vice versa, the unit sphere may

be transformed into an ellipsoid by applying the inverse oper-

ator ¥~^ to each radius vector r'. Furthermore if a, b, c are

a system of three conjugate radii vectors in an ellipsoid

a- ?f2.a = b. ?P'2.b = o- ?r2.c = l,

a - ^2 . b = b • ?r2 . c = c . ST^ . a = 0.

If for the moment a', b', c' denote respectively ¥ • a,, ¥ > h,

¥.e,
a' . a' = b' . b' = c' . c' = 1,

a' . V - b' . c' = c' . a' = 0.

Hence the three radii vectors a', b', c' of the unit sphere into

which three conjugate radii vectors in the eUipsoid are trans-

formed by the operator ¥~^ are mutually orthogonal. They

form a right-handed or left-handed system of three mutually

perpendicular unit vectors.

Theorem : Any ellipsoid may be transformed into any other

ellipsoid by means of a homogeneous strain.

Let the equations of the elhpsoids be

r . <P . r = 1,

and f • ¥ 'i = 1.

By means of the strain <?* the radii vectors r of the first

ellipsoid are changed into the radii vectors r' of a unit sphere

T'=0i-T, t''t'=1.

By means of the strain ¥-i the radii vectors r' of this unit

sphere are transformed in like manner into the radii vectors f

of the second ellipsoid. Hence by the product r is changed

into r.

r = ¥-i ^» . r. (19)
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The transfoimation may be accomplished in more ways

than one. The radii vectors r' of the unit sphere may be

transformed among themselves by means of a rotation with or

without a perversion. Any three mutually orthogonal unit

vectors in the sphere may be changed into any three others.

Hence the semi-axes of the first ellipsoid may be carried over

by a suitable strain into the semi-axes of the second. The

strain is then completely determined and the transformation

can be performed in only one way.

142.] The equation of a family of confocal quadric sur-

faces is

+ r^+ 7^-7 = 1- (20)
a^ — ji 6^ — w c'^ — n

If r . ^ - r = 1 and r • W • x= 1 are two surfaces of the

family,

= 1
-^^— + "5

a^— «! &2— «! c^— «!

i i i i k k

<?-i = (a2 -n^)ii + {b^ - %) j j + (c^ - n^) kk,

?p-i = (aa - «2) ii + (P^ - "2) JJ + ("^ " ^i) ^^^

Hence (p-» - ?r-i = (wj - Wi) (11 + j j + kk)

= (n^ - n{) I.

The necessary and sufficient condition that the two quadrics

I . .T = l

and r . ?? • r = 1

be confocal, is that the reciprocals of and W differ by a

multiple of the idemfactor

<p-i_ 5F-i = a;I. (21)
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If two confocal quadrics intersect, they do so at right angles.

Let the quadrics be t > r — 1,

and r • ^T • r = 1.

Let s = <P • r and s' = ¥ • t,

r = <?-! . s and r = Sf-i • s'.

Then the quadrics may be written in terms of s and s' as

s- (p-i. 8 = 1,

and s'. f~i.s' = l,

where by the confocal property.

If the quadrics intersect at r the condition for perpendicularity

is that the normals Q • r and f • r be perpendicular. That is,

s . s' = 0.

But r = f-i • s' = (?-i
• s = (f-i + a; I) . s

= ¥~^ . 8 + a; s,

a; 8 . s' = s' . r-i . s' — 8 • ?r-i . s' = 1 - 8 . 2^-1 . 8'.

In like manner

r _ (2)-i
. 8 = f-i . s' - (<P-^ = xl)'s'=0-^'s' -X s'.

a; 8 . s' = s .
<p-i

• s' - 8 • <P-i • 8 = 8 .
<p-i

. s' - 1.

Add : 2 a; s • s' = 8 . {0'^ — W'^) • 8' = a; s . s'.

Hence s • s' = 0,

and the theorem is proved.

If the parameter n be allowed to vary from — oo to + oo the

resulting confocal quadrics wiU consist of three famihes of

which one is ellipsoids ; another, hyperboloids of one sheet

;

and the third, hyperboloids of two sheets. By the foregoing
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theorem each surface of any one family cuts every surface

of the other two orthogonally. The surfaces form a triply

orthogonal system. The hnes of intersection of two families

(say the family of one-sheeted and the family of two-sheeted

hyperboloids) cut orthogonally the other family— the family

of ellipsoids. The points in which two ellipsoids are cut by

these lines are called corresponding points upon the two ellip-

soids. It may be shown that the ratios of the components of

the radius vector of a point to the axes of the elUpsoid

through that point are the same for any two corresponding

points.

For let any ellipsoid be given by the dyadic

. i i ii kk

The neighboring ellipsoid in the family is represented by the

dyadic

w= '' + ^i + ^^
,

a^ — dn b^ — dn c^ — dn

5F-i= 0-i + ldn.

Inasmuch as <P and ¥ are homologous (see Ex. 8, p. 330)

dyadics they may be treated as ordinary scalars in algebra.

Therefore if terms of order higher than the first in dn he

omitted, W=0 + ldn.

The two neighboring ellipsoids are then

r . (/> . r = 1,

and f • (<P + Idn) • f = 1,

By (19) x = i<^
+ ldn)-^' 0i'T,

f = (I -h dn^-i • r,

r _ (I - i <P c^Ti) . r = r - -- <^> - r.
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The vectors f and r differ by a multiple of ^ • r which is

perpendicular to the ellipsoid 0. Hence the termini of f and

r are corresponding points, for they lie upon one of the lines

which cut the family of ellipsoids orthogonally. The com-

ponents of r and f in the direction i are r • i = a; and

_ dn dn x

2 2 a*

X dn
The ratio of these components is - = 1 — ——-

•

The axes of the ellipsoids in the dii-ection i are Va^ — dn and

a. Their ratio is

1 dn
Ja^ -dn a - H— i «'* «

a 2 a^ X
a

T vi \^l^—dn y .'\/c'^ — dn s
In like manner -!^ — - and = -.by c z

Hence the ratios of the components of the vectors f and r

drawn to corresponding points upon two neighboring ellip-

soids only differ at most by terms of the second order m dn

from the ratios of the axes of those ellipsoids. It follows

immediately that the ratios of the components of the vectors

drawn to corresponding points upon any two ellipsoids, sepa-

rated by a finite variation in the parameter ti, only differ at

most by terms of the first order ia. dn from the ratios of the

axes of the ellipsoids and hence must be identical with them.

This completes the demonstration.

The Propagation of Light in Crystals^

143.] The electromagnetic equations of the ether or of any

infinite isotropic medium which is transparent to electromag-

netic waves may be written in the form

1 The following discussion must be regarded as mathematical not physical.

To treat the subject from the standpoint of physics would be out of place here.
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Pot
d^H

d^ + ^D + VF=0, V.D = (1)

where D is the electric displacement satisfying the hydrody-

namic equation V • D = 0, ^ a constant of the dielectric meas-

ured in electromagnetic units, and V V the electrostatic force

due to the function V. In case the medium is not isotropic the

constant £ becomes a linear vector function 0. This function

is self-conjugate as is evident from physical considerations.

For convenience it wUl be taken as 4 tt <P. The equations

then become

Pot-—2+4 7r<P.D-f- VF=0, V.D=0. (2)

Operate by V X V X.

d^B
V X V X Pot— -f-47rVxVx(2>.D = 0. (3)

The last term disappears owing to the fact that the curl of

the derivative VF vanishes (page 167). The equation may

also be written as

PotVxVx^+47rVxVx(^>.D = 0. (3)'

But V x V X =VV . - V . V.

. „ dB
,

Remembering that V • D and consequently V • -jj and

d^ D
V • vanish and that Pot V • V is equal to — 4 tt the

dt^

equation reduces at once to

'^^^ V . V <? • D - VV . (? . D, V . D = 0. (4)

dt^

Suppose that the vibration D is harmonic. Let r be the

vector drawn from a fixed origin to any point of space.



394 VECTOR ANALYSIS

Then D = A cos (m • r — w

'where A and m are constant vectors and n a constant scalar

represents a train of waves. The vibrations take place in

the direction A. That is, the wave is plane polarized. The

wave advances in the direction m. The velocity v of that ad-

vance is the quotient of n by m, the magnitude of the vector

m. If this wave is an electromagnetic wave in the medium

considered it must satisfy the two equations of that medium.

Substitute the value of D in those equations.

The value of V - D, V • V (P • D, and V V • (P • D may be

obtained most easily by assuming the direction i to be coinci-

dent with m. m • r then reduces to m 1 • r which is equal to

m X. The variables y and z no longer occur in D. Hence

D = A cos (mx — nf)

OHV • D = 1 • -;^— = — i • A m sin (m x — nf)
3 X ^

V • V (? . D = — m2 <p . A cos (mx — nf)

V V • (? - D = — m^ i i . (p . A cos (mx — nf).

Hence V • D = — m • A sin (m ' r — nf)

V • V <P - D = — m . m (? . D

VV. <P.D = -mm. <2>.D,

^^"^
Moreover -r—s = — n^H.

a V

Hence if the harmonic vibration D is to satisfy the equa-

tions (4) of the medium

»^D = m«in <P.D — mni«(P.D (5)

and m • A = 0. (6)
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The latter equation states at once that the vibrations must

le transverse to the direction m of propagation of the waves.

The former equation may be put in the form

. D. (5)'
m • m. ^ _
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Hence the wave slowness s due to a displacement in the

direction a is equal in magnitude (but not in direction) to the

radius vector drawn in the ellipsoid a • <P • a = 1 in that

direction.

axa = = s»s ax(2'»a — axs s-<?«a

= s.s(ax(?'a).(?'.a = axs.(?-a s.(?>.a.

But the first term contains <P - a twice and vanishes. Hence

a X s . <? . a = [a s <P • a] = 0. (11)

The wave-slowness s therefore lies in a plane with the

direction a of displacement and the normal • a drawn to the

ellipsoid a • (^ • a = 1 at the terminus of a. Since s is perpen-

dicular to a and equal in magnitude to a it is evidently com-

pletely determined except as regards sign when the direction

a is known. Given the direction of displacement the line of

advance of the wave compatible with the displacement is com-

pletely determined, the velocity of the advance is likewise

known. The wave however may advance in either direction

along that line. By reference to page 386, equation (11) is seen

to be the condition that a shall be one of the principal axes of

the ellipsoid formed by passing a plane through the ellipsoid

perpendicular to s. Hence for any given direction of advance

there are two possible lines of displacement. These are the

principal axes of the ellipse cut from the ellipsoid a • # • a = 1

by a plane passed through the center perpendicular to the

line of advance. To these statements concerning the deter-

minateness of s when a is given and of a when s is given just

such exceptions occur as are obvious geometrically. If a and

(P • a are parallel s may have any direction perpendicular to a.

This happens when a is directed along one of the principal

axes of the ellipsoid. If s is perpendicular to one of the

circular sections of the ellipsoid a may have any direction in the

plane of the section.



THE PROPAGATION OF LIGHT IN CRYSTALS 397

When the direction of displacement is allowed to vary the

slowness s varies. To obtain the locus of the terminus of s, a

must be eliminated from the equation

a = 8*8 • a — SS • ' SL

or (I - s • s <P + s s . (?>) . a = 0. (12)

The dyadic in the parenthesis is planar because it annihilates

vectors parallel to a. The third or determinant is zero. This

gives immediately

(I - s . 8 C?> + s s . <^>) 3 = 0,

or (<P-1 -8.8 I + 8 8)3 = 0. (13)

This is a scalar equation in the vector s. It is the locus of

the extremity of 8 when a is given all possible directions. A
number of transformations may be made. By Ex. 19, p. 331,

(# + e f)3 = (^>3 + e • <2'2 • f = <^3 + e • <^<r^ • f <^8-

Hence

((p-l_8.sI)3 + S.(<2>-l-8.8l)o"^.8((?^l-S.sI)3 = 0.

Dividing out the common factor and remembering that is

self-conjugate.

1 + 8 . (<P-1 - 8 • 8 I)-l . 8 = 0.

or 1 + 8 • -, '8 = 0,
1 — B • a

8.1.8
rt+s- r 7n

-8=0
8 . S I — 8 . 8 (P

/ 8 • 8 <P \ .
g . ( I J 1.8 = 0.

V I - 8 • 8 (^/

Hence s . := ^ -8 = 0. (14)
I — 8 . 8 <P

^ ii jj kk
Let ^ = 7^ + P +^



898 VECTOR ANALYSIS

^ ^ii+/'-^'lJJ+/^-.Vfe-

Let s = a; i + yi + zls. and s^ = x^ + y^.+ z^.

Then the equation of the surface in Cartesian coordinates is

<k2 0.2 «2

a2 52 c2

The equation in Cartesian coordinates may be obtained

directly from
(<?-! — s. s 1 + 88)3 = 0.

The determinant of this dyadic is

X z

-- 0. (13)'

X y X z

xy h'^ — s^ + y^ y z

X z y z c^ — s^ + z^

By means of the relation s^ = x^ + y^ + s* this assumes the

forms
x^ y^ z^

s^ — a^ s^ — h^ s^ — c^

a^ x^ b^ y^ c^ z^ _
s2 _ ^[2 s2 _ 52 s2 _ g2

*^ y^ ^^

or mZ"*' l^Z^TITf!
"

a2 62 c2

This equation appears to be of the sixth degree. It is how-

ever of only the fourth. The terms of the sixth order cancel

out.

The vector 8 represents the wave-slowness. Suppose that a

plane wave polarized in the direction a passes the origin at a
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certain instant of time -with this slowness. At the end of a

unit of time it will have travelled in the direction s, a distance

equal to the reciprocal of the magnitude of s. The plane will

be in this position represented by the vector s (page 108).

If & = ui-\- v] + wis.

the plane at the expiration of the unit time cuts off intercepts

upon the axes equal to the reciprocals of u, v, w. These

quantities are therefore the plane coBrdinates of the plane.

They are connected with the coordinates of the points ia the

plane by the relation

If different plane waves polarized in all possible different

directions a be supposed to pass through the origin at the

same instant they will envelop a surface at the end of a unit

of time. This surface is known as the wave-surface. The

perpendicular upon a tangent plane of the wave-surface is the

reciprocal of the slowness and gives the velocity with which

the wave travels in that direction. The equation of the wave-

surface in plane coordinates u, v, w is identical with the equa-

tion for the locus of the terminus of the slowness vector s.

The equation is

+ :5+ :2 =
s -t a

1
o (15)

where s^ = u^ -\- v"^ { w\ This may be written in any of the

forms given previously. The surface is known as FresneVs

Wave-Surface. The equations in vector form are given on

page 397 if the variable vector s be regarded as determining a

plane instead of a point.

145.] In an isotropic medium the direction of a ray of

light is perpendicular to the wave-front. It is the same as

the direction of the wave's advance. The velocity of the ray
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is equal to the velocity of the wave. In a non-isotropic

medium this is no longer true. The ray does not travel per-

pendicular to the wave-front— that is, in the direction of the

wave's advance. And the velocity with which the ray travels

is greater than the velocity of the wave. In fact, whereas the

wave-front travels off always tangent to the wave-surface, the

ray travels along the radius vector drawn to the point of tan-

gency of the wave-plane. The wave-planes envelop the

wave-surface; the termini of the rays are situated upon it.

Thus in the wave^urface the radius vector represents in mag-

nitude and direction the velocity of a ray and the perpen-

dicular upon the tangent plane represents in magnitude and

direction the velocity of the wave. If instead of the wave-

surface the surface which is the locus of the extremity of the

wave slowness be considered it is seen that the radius vector

represents the slowness of the wave; and the perpendicular

upon the tangent plane, the slowness of the ray.

Let v' be the velocity of the ray. Then s • v' = 1 because

the extremity of v' lies in the plane denoted by s. Moreover

the condition that v' be the point of tangency gives d v' per-

pendicular to s. In like manner if s' be the slowness of the

ray and v the velocity of the wave, s' v = 1 and the condition

of tangency gives d s' perpendicular to v. Hence

8 • v' = 1 and s' • T = 1, (16)

and s- dv' = 0, v • (? s' = 0, v' • c? s = 0, s' • dv = 0,

v' may be expressed in terms of a, s, and as follows.

a = S'S(P'a — ss« • a,,

da, = 2 s • da (?«a — s« > a, ds + s • s > da.

— 8 ds • (P«a = ss- ' da,.

Multiply by a and take account of the relations a • s = and

a • • da. = and a • a = s • s. Then
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B • da — a, • ds S'(P«a = 0,

or d a • (s — a. s • - a,) = 0.

But since v' da = 0, v' and s — a s • <? • a have the same

direction.

v' = a; (s — a s . <P • a),

s.v' = «(s«s — s-as. (^•a) = a;s«s.

„ ,s — as.(?>.a
Hence v' =

, (17)
s * s

s.<P«a — a'<P«as'(?'a
v' . ' a,= = 0.

s • 8

Hence the ray velocity v' is perpendicular to • a,, that is, the

ray velocity lies in the tangent plane to the eEipsoid at the

extremity of the radius vector a drawn in the direction of the

displacement. Equation (17) shows that v' is coplanar with

a and s. The vectors a, s, <P • a, and v' therefore lie in one

plane. In that plane s is perpendicular to a ; and v', to ^ • a.

The angle from s to v' is equal to the angle from a to > a,.

Making use of the relations already found (8) (9) (11)

(16) (17), it is easy to show that the two systems of vectors

a, v', a X v' and • a,, a, (^ • a) X s

are reciprocal systems. If (2> • a be replaced by a' the equa-

tions take on the symmetrical form

s»a = s»s = a-a a»a' = l,

v'.a' = v'.v'=a'-a' s-v' = l,

a = s X a' X s a' = v' x a x v' (18)

s = a X v' X a v' = a' X s X a'

a . <P • a = 1 a' • <P-1 • a' = 1.

Thus a dual relation exists between the direction of displace-

ment, the ray-velocity, and the ellipsoid on the one hand

;

26
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and the normal to the ellipsoid, the wave-slowness, and the

ellipsoid ~^ on the other.

146.] It was seen that if s was normal to one of the cir-

cular sections of <? the displacement a could take place in any

direction in the plane of that section. For aU directions in

this plane the ware-slowness had the same direction and the

same magnitude." Hence the wave-surface has a singular

plane perpendicular to s. This plane is tangent to the surface

along a curve instead of at a single point. Hence if a wave

travels in the direction s the ray travels along the elements of

the cone drawn from the center of the wave-surface to this

curve in which the singular plane touches the surface. The

two directions s which are normal to the circular sections of

are called the primary optic axes. These are the axes of equal

wave velocities but unequal ray velocities.

In like manner v' being coplanar with a and • a

[(? . a v' a] = [a' v' 0'^ • a'] = 0.

The last equation states that if a plane be passed through

the center of the eEipsoid 0~^ perpendicular to v', then a'

which is equal to <? • a will be directed along one of the prin-

cipal axes of the section. Hence if a ray is to take a definite

direction a' may have one of two directions. It is rnore con-

venient however to regard v' as a vector determining a plane.

The first equation

[<P . a v' a] =

states that a is the radius vector drawn in the ellipsoid to

the point of tangency of one of the principal elements of the

cylinder circumscribed about parallel to v' : if by a principal

element is meant an element passing through the extremities

of the major or minor axes of orthogonal plane sections

of that cylinder. Hence given the direction v' of the ray, the

two possible directions of displacement are those radii vectors
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of the ellipsoid which lie in the priacipal planes of the cylin-

der circumscribed about the ellipsoid parallel to v'.

If the cylinder is one of the two circular cylinders which

may be circumscribed about the direction of displacement

may be any direction in the plane passed through the center

of the ellipsoid and containing the common curve of tangency

of the cylinder with the ellipsoid. The ray-velocity for aU
these directions of displacement has the same direction and

the same magnitude. It is therefore a line drawn to one

of the singular points of the wave-surface. At this singular

point there are an infinite number of tangent planes envelop-

ing a cone. The wave-velocity may be equal in magnitude

and direction to the perpendicular drawn from the origin to

any of these planes. The directions of the axes of the two
circular cylinders circimiscriptible about the ellipsoid are

the directions of equal ray-velocity but unequal wave-velocity.

They are the radii drawn to the singular points of the wave-

surface and are called the secondary optic axes. If a ray

travels along one of the secondary optic axes the wave planes

travel along the elements of a cone.

Variable Dyadics. The Differential and Integral Calculus

147.] Hitherto the dyadics considered have been constant.

The vectors which entered into their make up and the scalar

coefficients which occurred in the expansion in ^lonion form

have been constants. For the elements of the theory and for

elementary applications these constant dyadics suffice. The

introduction of variable dyadics, however, leads to a simplifica-

tion and unification of the differential and integral calculus of

vectors, and furthermore variable dyadics become a necessity

in the more advanced applications— for instance, in the theory

of the curvature of surfaces and in the dynamics of a rigid

body one point of which is fixed.
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Let W be a vector function of position in space. Let r be

the vector drawn from a fixed origin to any point in space.

I — xi + yj + zk,

dt = dx i + dy i + dzk,

rtW = dx -T~ + dy 1- dz -r—.
d

X

ay a z

XT ^^ J (.5W
,
.3W

,
, 5W)

Hence « W = a r • J i h ] -z f- k —— \

.

( d X ay az

)

The expression enclosed in the braces is a dyadic. It thus

appears that the differential W is a linear function of d r, the

differential change of position. The antecedents are i, j, k,

and the consequents the first partial derivatives of W with re-

spect of X, y, z. The expression is found in a manner precisely

analogous to del and will in fact be denoted by V W.

SW 5W 3WVW = i^ + j ^ + k-;f^. (1)ax ay 3 z

Then dW = di -VW. (2)

This equation is like the one for the differential of a scalar

function V.

dV=dv.VV.

It may be regarded as defining VW. If expanded into

nonion form VW becomes

^„ ..S^ ..9T . 3ZVW = ii-T- + ^J7r- + Jt7r"3x dx Sx

By 9y * dy

,
.9X , .SF

,
, 3Z

+ ki-^ + k]^r- + kk-^,
az az a z

if W = Xi + Fi + Zk.
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The operators V • and V X which were applied to a vector

function now become superfluous from a purely analytic

standpoint. For they are nothing more nor less than the

scalar and the vector of the dyadic V W.

divW = V. W = (VW)5, (4)

curlW = Vx W = (VW)^. (^5)

The analytic advantages of the introduction of the variable

dyadic VW are therefore these. In the first place the oper-

ator V may be applied to a vector function just as to a scalar

function. In the second place the two operators V • and V x
are reduced to positions as functions of the dyadic V W. On
the other hand from the standpoint of physics nothing is to

be gained and indeed much may be lost if the important in-

terpretations of V •W and V x W as the divergence and curl

of W be forgotten and their places taken by the analytic idea

of the scalar and vector of VW.
If the vector function W be the derivative of a scalar

function V,

dW = dVV^dT.VVV,

where VVr= ii ^^ + ij- ^-^ + ik
9 x''^ 3x5y dxdz

dy dx Sy^ 3y d

z

The result of applying V twice to a scalar function is seen to

be a dyadic. This dyadic is self-conjugate. Its vectorV X VF
is zero ; its scalar V • VFis evidently

v.vr=(vvF).=^ + .^ + 5^.
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If an attempt were made to apply the operator V symboli-

cally to a scalar function V three times, the result would be a

sum of twenty-seven terms Uke

iiiTp-^, ijk^i—T—^,etc.
o'a!'* c) X a y dz

This- is a triadic. Three vectors are placed in juxtaposition

without any sign of multiphcation. Such expressions will

not be discussed here. In a similar manner if the operator V
be applied twice to a vector function, or once to a dyadic func-

tion of position in space, the result will be a triadic and hence

outside the limits set to the discussion here. The operators

V X and V • may however be appUed to a dyadic to yield

respectively a dyadic and a vector.

„ ^.90.90 90V X = ix^^ + jx
9.x

9
V. (^ = i.-_ + j9 X

If <j] ^^= u i + V j + w k,

where u, v, w are vector functions of position in space,

Vx (?> = Vxii i + Vxvj + Vx wk, (7)'

and V.(P = V-ui + V-vj-l-V.wk. (8)'

Or if (P = i u + j V + k w,

dy 9 z
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, „, ^ 5 9 3
(a.V)(? = a,^ + a,^ + a3^. (9)

^ 9^ 9^ 9^

The operators a • V and V • V as applied to vector func-

tions are no longer necessarily to be regarded as single* oper-

ators. The individual steps may be carried out by means of

the dyadic VW.

(a . V) W = a • (V W) = a . V W,

(V . V) W = V . (VW) = V . V W.

But when applied to a dyadic the operators cannot be inter-

preted as made up of two successive steps without making use

of the triadic V 0. The parentheses however may be removed

without danger of confusion just as they were removed in

case of a vector function before the introduction of the dyadic.

Formulae similar to those upon page 176 may be given for

differentiating products in the case that the differentiation

lead to dyadics.

V (m v) = V M V + zt V V,

V(vxw) = Vvxw — Vwxv,

Vx (vxw)=W'Vv — V«vw — V"Vw-l-V«wy,

V (v . w) = V V • w + V w • T,

V • (v w) = V V w + V • V w.

Vx (vw) = Vxvw — vxVw,

V . (tt (P) = V J* . <?> + w V • (P,

V X V X = VV ' 0-V 'V 0,eiG.

The principle in these and all similar cases is that enun-

ciated before, namely: The operator V may be treated sym-
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bolically as a vector. The differentiations which it implies

must be carried out in turn upon each factor of a product

to which it is applied. Thus

V X (vw) = [V X (v w)]v + [V X (vw)]^

[V X (v w)]w = V X V w,

[V X (v w)]v = — [v X V w]t = — V X V w.

Hence Vx (vw) = Vxvw — vxVw.

Again V (v X w) = [V (v x w)]t + [V (v x w)],„

[V (v X w)]w = V V X w,

[V (V X w)]v = [- V (w X v)], = - V w X V.

Hence V(vxw) = Vvxw — v^xv.

148.] It was seen (Art. 79) that if denote a curve of

which the initial point is r„ and the final point is r the line in-

tegral of the derivative of a scalar function taken along the

curve is equal to the difference between the values of that

function at r and r„.

fdT.VV= F(r)- F(r„).

In like manner I dr - VW = W Qc') — Vf (r^),
J

and fdi-VW = 0.

Jo

It may be well to note that the integrals

fdi'VW and Cvw-dr

are by no means the same thing. VW is a dyadic. The

vector d r cannot be placed arbitrarily upon either side of it.
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Owing to the fundamental equation (2) the differential dr
necessarily precedes V W. The differentials must be -written

before the integrands in most cases. For the sake of uni-

formity they always will be so placed.

Passing to surface integrals, the following formulae, some

of which have been given before and some of which are new,

may be mentioned.

f f dax VV= Cdi V

f Cda.x VW= fdi W

rftZa. Vx W= CdT'W

j j
da.V X 0= jdT'0.

The line integrals are taken over the complete bounding curve

of the surface over which the surface integrals are taken. In

like manner the following relations exist between volume and

surface integrals.

Iff'' ^'^=//''' '

C C Cdv V X W= Cfd&xW

f f f dv V' 0=ffd&'

f f fdvV X 0=ffdax 0.
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The surface integrals are taken over the complete bounding

surface of the region throughout which the volume integrals

are taken.

Numerous formulae of integration by parts like those upon

page 250 might be added. The reader will find no difficulty in

obtaining them for himself. The integrating operators may
also be extended to other cases. To the potentials of scalar

and vector functions the potential, Pot (?, of a dyadic may be

added. The Newtonian of a vector function and the Lapla-

cian and Maxwellian of dyadics may be defined.

NewW= fff'-M^^-^q^l^L^dv,,
'J J J

;i ^12

^^p " =111 '" ^.^?;' '"
'^^

^ -^^

The analytic theory of these integrals may be developed as

before. The most natural way in which the demonstrations

may be given is by considering the vector function W as the

sum of its components,

and the dyadic (? as expressed with the constant consequents

i, j, k and variable antecedents u, v, w, or vice versa.

= u i + vj + w k.

These matters will be left at this point. The object of en-

tering upon them at all was to indicate the natural extensions

which occur when variable dyadics are considered. These ex-

tensions differ so slightly from the simple cases which have
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gone before that it is far better to leave the details to be worked
out or assumed from analogy whenever they may be needed
rather than to attempt to develop them in advance. It is suffi-

cient merely to mention what the extensions are and how they

maybe treated.

The Curvature of Surfaces 1

149. ] There are two different methods of treating the cur-

vature of surfaces. In one the surface is expressed in para-

metic form by three equations

a; =/i (^, v), y=f^ (m, V), z=zf^ (m, v),

or r = f (m, v').

This is analogous to the method followed (Art. 57) in dealing

with curvature and torsion of curves and it is the method

employed by Fehr in the book to which reference was made.

In the second method the surface is expressed by a single

equation connecting the variables x,y,z— thus

F Cx, y, Z-) = 0.

The latter method of treatments affords a simple application of

the differential calculus of variable dyadics. Moreover, the

dyadics lead naturally to the most important results connected

with the elementary theory of surfaces.

Let r be a radius vector drawn from an arbitrary fixed

origin to a variable point of the surface. The increment d i

lies in the surface or in the tangent plane drawn to the surface

at the terminus of r.

dF=dT' VF=0.

Hence the derivative Vi^is collinear with the normal to the

surface. Moreover, inasmuch as F and the negative of i^when

1 Much of what follows is practically free from the use of dyadics. This is

especially true of the treatment of geodetics, Arts. 155-157.
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equated to zero give the same geometric surface, V F Ta2t,Y be

considered as the normal upon either side of the surface. In

case the surface belongs to the family defined by

F (x, y, z) = const.

the normal V F lies upon that side upon which the constant

increases. Let V i^ be represented by N the magnitude of

which may be denoted by N, and let n be a unit normal drawn

in the direction of N. Then

N.N = i\^2 = VJ'. V.P, (1)

If s is the vector drawn to any point in the tangent plane at

the terminus of r, s—r and n are perpendicular. Consequently

the equation of the tangent plane is

(s-r). Vi?'=0.

and in hke manner the equation of the normal line is

(s-r) X Vi^'^O,

or s = r + A;V.F

where ^ is a variable parameter. These equations may be

translated into Cartesian form and give the familiar results.

150.] The variation (Zn of the unit normal to a suiface

plays an important part in the theory of curvature. c?n is

perpendicular to n because n is a unit vector.

d-a. = -— V Fa- -dVF,
jy2 iV
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iV iV'^

The dyadic I — nn is an idemfactor for all vectors perpen-

dicular to n and an annihilator for vectors parallel to n.

Hence

dn <• (1 — nn) = dn,

and V i^
- (I - nn) = 0,

dn = d(^VF)=zVFd^ + ^dVF.
\J!i J N N

Hence dn = —-dX'^VF-CL — nn).

But dr = dx ' (l — nn),

,
(I-nn) . VVJf- (I-nn)

Hence dn = dx'- ^^ '-- (2)

Let
^^(I-nn).VV^.(I-nn).

N

Then dn = (fr • (P. (4)

In the vicinity of any point upon a surface the variation c? n of

the unit normal is a linear function of the variation of the

radius vector r.

The dyadic is self-conjugate. For

JV^(/)p=(I-nn)p. {^V F)a- (I-nn)^.

Evidently (I - n n)^ = (I - n n) and by (6) Art. 147 WF
is self-conjugate. Hence 0c is equal to 0. "When applied to

a vector parallel to n, the dyadic produces zero. It is there-

fore planar and in fact uniplanar because self-conjugate. The

antecedents and the consequents lie in the tangent plane to
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the surface. It is possible (Art. 116) to reduce to the

form
<P = a i'i' + 6 j'j' (5)

where i' and j' are two perpendicular unit vectors lying in the

tangent plane and a and I are positive or negative scalars.

dzi. = dx '(a i'i' + I j'j').

The vectors i', j' and the scalars a, b vary from point to point

of the surface. The dyadic <P is variable.

151.] The conic r • (? • r = 1 is called the indicatrix of the

surface at the point in question. If this conic is an ellipse,

that is, if a and b have the same sign, the surface is convex at

the point ; but if the conic is an hyperbola, that is, if a and b

have opposite signs the surface is concavo-convex. The curve

r . (p . r = 1 may be regarded as approximately equal to the

intersection of the surface with a plane drawn parallel to the

tangent plane and near to it. If r • <P • r be set equal to zero

the result is a pair of straight lines. These are the asymp-

totes of the conic. If they are real the conic is an hyperbola

;

if imaginary, an ellipse. Two directions on the surface which

are parallel to conjugate diameters of the conic are called con-

jugate directions. The directions on the surface which coin-

cide with the directions of the principal axes i', j' of the

indicatrix are known as the principal directions. They are a

special case of conjugate directions. The directions upon the

surface which coincide with the directions of the asymptotes

of the indicatrix are known as asymptotic directions. In case

the surface is convex, the indicatrix is an ellipse and the

asymptotic directions are imaginary.

In special cases the dyadic <? may be such that the coeffi-

cients a and 6 are equal. may then be reduQcd to the

form
<P = a(i'i'+j'j') (5)'
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in an infinite number of ways. The directions i' and j' maybe
any two perpendicular directions. The indicatrix becomes a

circle. Any pair of perpendicular diameters of this circle

give principal directions upon the surface. Such a point is

called an umbilic. The surface in the neighborhood of an

umbUic is convex. The asymptotic directions are imagiaary.

In another special case the dyadic becomes linear and redu-

cible to the form ^. .... ,_^„= a 1 1. (5)"

The indicatrix consists of a pair of parallel lines perpendicular

to i'. Such a point is called a parabolic point of the surface.

The further discussion of these and other special cases will be

omitted.

The quadric surfaces afford examples of the various kinds

of points. The ellipsoid and the hyperboloid of two sheets

are convex. The indicatrix of points upon them is an eUipse.

The hyperboloid of one sheet is concavo-convex. The in-

dicatrix of points upon it is an hyperbola. The indicatrix

of any point upon a sphere is a circle. The points are all

umbUics. The indicatrix of any point upon a cone or cylinder

is a pair of parallel hnes. The points are parabolic. A sur-

face in general may have upon it points of all types— elliptic,

hyperbolic, parabolic, and umbilical.

152.] A line of principal curvature upon a surface is a

curve which has at each point the direction of one of the prin-

cipal axes of the indicatrix. The direction of the curve at a

point is always one of the principal directions on the surface at

that point. Through any given point upon a surface two per-

pendicular lines of principal curvature pass. Thus the lines

of curvature divide the surface into a system of infinitesi-

mal rectangles. An asymptotic hne upon a surface is a curve

which has at each point the direction of the asymptotes of the

indicatrix. The direction of the curve at a point is always

one of the asymptotic directions upon the surface. Through
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any given point of a surface two asymptotic lines pass. These

lines are imagiaary if the surface is convex. Even when real

they do not in general iatersect at right angles. The angle

between the two asymptotic lines at any point is bisected by

the lines of curvature which pass through that point.

The necessary and sufficient condition that a curve upon a

surface be a line of principal curvature is that as one advances

along that curve, the increment of dn, the unit normal to the

surface is parallel to the line of advance. For

dn= di = Qa i'i' + 6 j'j') . dr

di = X i' + yj'.

Then evidently d n and d r are parallel when and only when

c?r is parallel to i' or j'. The statement is therefore proved.

It is frequently taken as the definition of lines of curvature.

The differential equation of a Hne of curvature is

dnxdr = 0. (6)

Another method of statement is that the normal to the surface,

the increment dn oi. the normal, and the element dv of the

surface He in one plane when and only when the element d r

is an element of a line of principal curvature. The differential

equation then becomes

[n dn dT^=:0. (7)

The necessary and sufficient condition that a curve upon a

surface be an asymptotic hne, is that as one advances along

that curve the increment of the unit normal to the surface is

perpendicular to the line of advance. For

dn = dv •

dn ' dv = dr ' dr.

If then dn • di is zero dv • • di is zero. Hence cZ r is an

asymptotic direction. The statement is therefore proved. It
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is frequently taken as the definiticm of asymptotic lines. The
differential equation of an asymptotie line is

d n . (Z r = 0. (8)

153.} Let P be a given point upon a surface and n the

normal to the surface at P. Pass a plane p through n. This

plane p is normal to the surface and cuts out a plan© section.

Consider the curvature of this plane section at the point P.

Let a' B© normal to the plane section in the plane of the

gectian. n! coincides with n at the point P. But unless the

plane p cuts the surface everywhere orthogonally, the normal

n' to the plan© section and the normal n to the surface wiU not

coincide, d n and d n' wfll also be difEereiit, The cuorvature

of ihe plane eeotiott lying in p is (Art. §7).

£t^^
~ ds"ds^'

As far as numerical value is concerned the increment of the

Unit iangent t and th© increment of the unit normal n' are

equal. Moreover, the quotient of d r by (Z s is a unit vector

ia the direction of d n'. Consequently the scalar value of C is

^dn' dt dn' • dt
~ ds d s ds"^

By hypothesis n = n' at P and ri' dx = n' • dx = Q.,

«? (n • d r) = d n . d r + n • (?2 r = 0,

d(v! • dt^ =dn' . dx + n' > d^i=0.

Hence dn - dx + n ' d^i = dn' > dx + ji! * d^x.

Since n
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at • di dr ' ax

Hence G =^a cos^ (i', dx) + 1 cos^ (j', d r),

or C= a cosa (i', dr') + h sin^ (i', (ir). (10)

The interpretation of this formula for the curvature of a

normal section is as follows : When the plane p turns about

the normal to the surface from i' to j', the curvature G of the

plane section varies from the value a when the plane passes

through the principal direction i', to the value h when it

passes through the other principal direction j'. The values

of the curvature have algebraically a maximum and minimum

in the directions of the principal lines of curvature. If a and

6 have unlike signs, that is, if the surface is concavo-convex

at P, there exist two directions for which the curvature of a

normal section vanishes. These are the asymptotic directions.

154.] The sum of the curvatures in two normal sections

at right angles to one another is constant and independent of

the actual position of those sections. For the curvature in

one section is

G-^^ — a cos^ (1', cZr) + 6 sin^ (1', dx),

and in the section at right angles to this

G^ = a sin2 (i', dx^^l cos^ (i', dx-).

Hence Cj + C^ = a + 6 = <?^ (11)

which proves the statement.

It is easy to show that the invariant 9^s'\^ equal to the pro-

duct of the curvatures a and & of the hnes of principal curv-

ature.

Hence the equation x^ — O^x-^- 0^^ = (12)
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is the quadratic equation which determines the principal curv-

atures a and h at any point of the surface. By means of this

equation the scalar quantities a and b may be found in terms

of F (x, y, z).

(I-nn) . VV^. (I-nn)=
iV

VVjP— 2iiii.VVi^+nn.VVi^.nn
JSf

(nU'W F' nn)^ = (nn. nn'WF)s= (nn. VV^)^

Hence <Pa = ^ j^

(yVF-)a = V .VF,

(nn . VV ^)^ = nn : VVi^= n - VV i^ • n.

V'VF VFVFiWF .._-

Hence (Pa =-^ ^ (1^)

V'VF VF-WF-VF
0^ = 1^^- - \- " • (13)'

These expressions may be -written out in Cartesian eoSrdinates,

but they are extremely long. The Cartesian expressions for

0^g are even longer. The vector expression may be obtained

as follows:

(I - nn)2 ' (VV-?')2 • <J - °°)2

(I-nn)2 = nn.

Hence
V^.(VViOo-V^ VJ^VJ^;(VVi02 ....

^^B = ^, '
=

T' ^ ^

155.] Given any curve upon a surface. Let t be a imit

tangent to the curve, n a unit normal to the surface and m a
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vector defined as n x t. The three vectors n, t, m constitute

an i, j, k system. The vector t is parallel to the element d r.

Hence the condition for a line of curvature becomes

tx dn = 0. (15)

Hence m. • d n =

d (m • n) = = m ' dn + n • d m.

Hence n • dm = 0.

Moreover
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n • t X d t = 0,

n X t . d t = (IT)

or m • d t = 0.

The differential equation of a geodetic line is therefore

[n d r d^x] = 0. (18)

Unlike the differential equations of the lines of curvature

and the asymptotic line, this equation is of the second order.

The surface is therefore covered over with a doubly infinite

system of geodetics. Through any two points of the surface

one geodetic may be drawn.

As one advances along any curve upon a surface there is

necessarily some turning up and down, that is, aroimd the

axis m, due to the fact that the surface is curved. There may

or may not be any turning to the right or left. If one advances

along a curve such that there is no turning to the right or

left, but only the unavoidable turning up and down, it is to be

expected that the advance is along the shortest possible route

— that is, along a geodetic. Such is in fact the case. The

total amount of deviation from a straight line is d t. Since n,

t, m form an i, j, k system

I = tt + nn + mm.

Hence dt = ii-dt-\-Tin'di + mTa.'di.

Since t is a unit vector the first term vanishes. The second

term represents the amount of turning up and down; the

third term, the amount to the right or left. Hence m • «Zt is

the proper measure of this part of the deviation from a

straightest line. In case the curve is a geodetic this term

vanishes as was expected.

156.] A curve or surface may be mapped upon a unit

sphere by the method of parallel normals. A fixed origin is

assumed, from which the unit normal n at the point P of a
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given surface is laid off. The terminus P' of this normal lies

upon the surface of a sphere. If the normals to a surface at all

points P of a curve are thus constructed from the same origin,

the points F' wiU trace a curve upon the surface of a tmit

sphere. This curve is caUed the spherical image of the given

curve. In hke manner a whole region T of the surface may
be mapped upon a region T' the sphere. The region T' upon

the sphere has been called the hodogram of the region T upon

the surface. If cZ r be an element of arc upon the surface the

corresponding element upon the unit sphere is

dn.— ' dr.

li da, he an element of area upon the surface, the corre-

sponding element upon the sphere is da.' where (Art. 124).

c? a' = (^2 • <^ a.

= a i'i' + 6 j'j'

(^2 = a6 i' X j' i'xj' = a& nn.

Hence daJ = ah nn«cZa. (19)

The ratio of an element of surface at a point P to the area of

its hodogram is equal to the product of the principal radii of

curvature at P or to the reciprocal of the product of the prin-

cipal curvatures at P.

It was seen that the measure of turning to the right or left

is m d t. If then G is any curve drawn upon a surface the

total amount of turning in advancing along the curve is the

integral.

m- dt. (20)L'
For any closed curve this integral may be evaluated in a

manner analogous to that employed (page 190) in the proof

of Stokes's theorem. Consider two curves G and C" near
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together. The variation which the integral undergoes when
the curve of integration is changed from C to C" is

S / TO. » dt.

8Jm.dt=Js(m.dt)=rSm.dt+ fm-Sdt

d (m • 8 1) = d m ' St + m • d St

SJm.dt=JSm.dt—jdm.St+ fd(m'St').

The integral of the perfect differential d (m- St) vanishes

when taken around a closed curve. Hence

S
I
m-dt=

I
Sm- dt— fdm- St

The idemfactor is I = tt + nn + mm,

Sni«dt=:8m-I«c?t = Sm»nn-dt,

for t • dt and S m • m vanish. A similar transformation may
be effected upon the term dm - St. Then

S
I
m' dt= /(Sm«n n ' dt — dm • n n«St).

By differentiating the relations m • n = and n t = it is

seen that

Sm»n:= — ni'Sn n»St^ — Sn-t

(Zin«n = — m-dn n ' dt = — dn • t.

Hence S j m > dt= i (m • Sn t ' dn — m • dn t • 5n)

S fm ' dt= j
(m X t - Snx dn) = —

I
n- Snx dn.



424 VECTOR ANALYSIS

The differential 8n X f^n represents the element of area in

the hodogram upon the unit sphere. The integral

/ n«5nx(in=5 / n- da!

represents the total area oi the hodogram of the strip of

surface wtiich lies between the curves G and C". Let the

curve C start at a point upon the surface and spread out to

any desired size. The total amount of turning which is re-

quired in making an infinitesimal circuit about the point is

2 IT. The total variation in the integral is

/ S /m«dt=/ m»<£t-'2w.

JJn.da!=.E,
^21)

But if H denote the total area of the hodogram.

Hence / va.- di = 2ir — H,

or E'=27r- Cm. dt, (22)

or S +
I
m ' dt=:2'jr.

The area of the hodogram of the region enclosed by any

closed curve plus the total amount of turning along that curve

is equal to 2 tt. If the surface in question is convex the area

upon the sphere will appear positive when the curve upon the

surface is so described that the enclosed area appears positive.

If, however, the surface is concavo-convex the area upon the

sphere will appear negative. This matter of the sign of the

hodogram must be taken into account in the statement made
above.
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157. J If the closed curve is a polygon whose sides are

geodetic lines the amount of turning along each side is zero.

TJie total turning is therefore equal to the sum of the exterior

angles of the polygon. The statement becomes : the sum of

the exterior angles of a geodetic polygon and of the area of

the hodogram of that polygon (taking account of sign) is

equal to 2 tt. Suppose that the polygon reduces to a triangle.

If the surface is convex the area of the hodogram is positive

and the sum of the exterior angles of the triangle is less than

2 TT. The sum of the interior angles is therefore greater than

TT. The sphere or ellipsoid is an example of such a surface.

If tjie surface is concavo-convex the area of the hodogram is

negative. The sum of the interior angles of a triangle is in

this case less than ir. Such a surface is the hyperboloid of one

sheet or the pseudosphere. There is an intermediate case in

which the hodogram of any geodetic triangle is traced twice in

opposite directions and tence the total area is zero. The sum

of the interior angles of a triangle upon such a surface is equal

to TT. Examples of this surface are afforded by the cylinder,

cone, and plane.

A surface is said to be developed when it is so deformed that

lines upon the surface retain their length. Geodetics remain

geodetics. One surface is said to be developable or applicable

upon another when it can be so deformed as to coincide with

the other without altering the lengths of lines. Geodetics

upon one surface are changed into geodetics upon the other.

The sum of the angles of any geodetic triangle remain un-

changed by the process of developing. From this it foUows

that the total amount of turning along any curve or the area

of the hodogram of any portion of a surface are also invariant

of the process of developing.
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Harmonic Vibrations and Bivectors

158. J The differential equation of rectilinear harmonic

motion is

•=~n^x.
df'

The integral of this equation may be reduced by a suitable

choice of the constants to the form

x^ A sin n t.

This represents a vibration back and forth along the X-axis

about the point x = Q. Let the displacement be denoted by

D in place of x. The equation may be written

D = 1 -4 sin n t.

Consider D = i ^ sin to ^ cos m x.

This is a displacement not merely near the point a; =

but along the entire axis of x. At points x = , wherem
A is a positive or negative integer, the displacement is at all

times equal to zero. The equation represents a stationary

wave with nodes at these points. At points midway between

these the wave has points of maximum vibration. If the

equation be regarded as in three variables x, y, z it repre-

sents a plane wave the plane of which is perpendicular to

the axis of the variable x.

The displacement given by the equation

Dj = i A^ cos (mx — nt~) (1)

is likewise a plane wave perpendicular to the axis of x but

not stationary. The vibration is harmonic and advances

along the direction i with a velocity equal to the quotient of
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n hj m. li V be the velocity; p the period; and I the \yave

length,

n 2ir 2-77 I ,„^

m n m P

The displacement

D2=j A^coB (mx — nt)

differs from D^ in the particular that the displacement takes

place in the direction j, not in the direction i. The wave as

before proceeds in the direction of x with the same velocity.

This vibration is transverse instead of longitudinal. By a

simple extension it is seen that

Ji = &.COS {mx — nt)

is a displacement in the direction A. The wave advances

along the direction of x. Hence the vibration is oblique to

the wave-front. A still more general form may be obtained

by substituting m • r for m x. Then

D = A cos (m • r — w ^). (3)

This is a displacement in the direction A. The maximum

amount of that displacement is the magnitude of A. The

wave advances in the direction m oblique to the displace-

ment; the velocity, period, and wave-length are as before.

So much for rectilinear harmonic motion. Elliptic har-

monic motion may be defined by the equation (p. 117).

The general integral is obtained as

r = Kcos nt + 'Bsinnt.

The discussion of waves may be carried through as pre-

viously. The general wave of elliptic harmonic motion

advancing in the direction m is seen to be
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D = A cos (m • r — » ^) — B sin (m • r — » Q, (4)

'dt
= — »

I
A sin (m • r — » ^) + B sin (m • T — M

f (5)

is the velocity of the displaced point at any moment in the

ellipse in which it vibrates. This is of course entirely differ-

ent from the velocity of the wave.

An interesting result is obtained by subtracting the dis-

placement from the velocity multiplied by the imaginary

unit V — 1 and divided by n.

V — IdJi
D = A cos Cm • r — «. — B sin (m » t — nf)

- d^ ^

^
+ V — 1 I

A sin (m • r — n ^) + B sin (m • r — ji }•

^"-"^I7^^^+^~^^^« (6)'

The expression here obtained, as far as its form is concerned,

is an imaginary vector. It is the sum of two real vectors of

which one has been multiplied by the imaginary scalar V — !•

Such a vector is called a Mvector or imaginary vector. The

ordinary imaginary scalars may be called Mscalars. The use

of bivectors is found very convenient in the discussion of

elliptic harmonic motion. Indeed any undamped elliptic har-

monic plane wave may be represented as above by the pro-

duct of a bivector and an exponential factor. The real part

of the product gives the displacement of any point and the

pure imaginary part gives the velocity of displacement

reversed in sign and divided by n.

159.] The analytic theory of bivectors differs from that of

real vectors very much as the analytic theory of biscalars

differs from that of real scalars. It is unnecessary to have

any distinguishing character for bivectors just as it is need-
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less to have a distingmahing natatioa for biscalars. The bi-

vector may be regarded as a natural and inevitable extension

of the real vector. It is the formal sum of two real vectors

of which one has been multiplied by the imaginary unit V— !•

The usual symbol i wiU be maintained for V — 1. There is

not much likelihood of confusion with the vector i for the

reason that the two could hardly be used in the same place

and for the further reason that the Italic i and the Clarendon

i differ considerably in appearance. Whenever it becomes

especially convenient to have a separate alphabet for bive&*

tors the small Greek or German letters may be called upon.

A bivector may be expressed in terms of i, j, k with com-

plex coefficients.

If r = ij + i Ta

and Tj = aj^ i + ^j j + Zj k,

Tj = a;a i + 2/2 j + «2 ^j

r = (iCi + i x^-) i + (yi + i ^2) i + (»x + * 83) t»

or r = a; i -t- y j + a k.

Two bivectora are equal when their real and their imaginary

parts are equal. Two bivectois are parallel when one is the

product of the other by a scalar (real or imaginary). If

a bivector is parallel to a real vector it is said to have a real

direction. In other cases it has a complex or imaginary

direction. The value of the sum, difference, direct, skew,

and indeterminate products of two bivectors is obvioTiS' with-

out special definition. These statements may be put into

analytic form as follows.

Let r = ti + i ig and s = Sj + i Sg.

Then if r = s, r j = Sj and t^ — s^

if r H s r = j& g = («! + ix^^ s,
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r + s = (ti + Sj) + i (rg + Sj),

r . s = (rj • Sj — Tg • Sj) + i (r^ • Sj + Tj . Sj),

r X s = (ri X Si - Ta X S2) + i (rj X Sg + Tg X s^)

r s = (ri Si + tj S2) + i (jc^ Sj + Tj Si).

Two bivectors or biscalars are said to be conjugate •when

their real parts are equal and their pure imaginary parts

differ only in sign. The conjugate of a real scalar or vector

is equal to the scalar or vector itself. The conjugate of any

sort of product of bivectors and biscalars is equal to the pro-

duet of the conjugates taken in the same order. A similar

statement may be made concerning sums and differences.

(Ti + i Tg) . (rj - i 12) = Ti . Fi + r2 • r^,

(Ji + * r2) X (ri - i 12) = 2 i 12 X Xy,

('1 + * ^2) (ri - * '2) = ('i Ti + ^2 ra) + i (j^ ij - r^ 12).

If the bivector r = r^ + i r2 be multiplied by a root of unity

or cyclic factor as it is frequently called, that is, by an imagi-

nary scalar of the form

cos g' + i sin 3' = a + i h, (7)

where a^ + b'^ — 1,

the conjugate is multiplied by a — i b, and hence the four

products

Tj
. rj + r2 • 12, Ta X rj, r^ t^ + r^ Tj, t^ r^ - Tj x^

are unaltered by multiplying the bivector r by such a factor.

Thus if

r' = r/ + i Ta' = (a + i 5) (tj + i ij),

r/ . ri' + Tj' . T^ = 11.11 + 12- Xj, etc.
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160.] A closer examination of the effect of multiplying a

bivector by a cyclic factor yields interesting and important

geometric results. Let

r/ + 113' = (cos 2 + i sin q) (r^ + i rj). (8)

Then r^' = r^ cos q — x^ sin g,

Tg' = ig cos 2 + Tj sin c[.

By reference to Art. 129 it will be seen that the change pro-

duced in the real and imaginary vector parts of a bivector by

multiplication with a cyclic factor, is precisely the same as

would be produced upon those vectors by a cyclic dyadic

<P = a a' + cos 2 (1) b' + c c') — sin g (e b' — b c')

used as a prefactor. b and c are supposed to be two vectors

coUinear respectively with rj and r^. a is any vector not in

their plane. Consider the ellipse of which Tj and r^ are a

pair of conjugate semi-diameters. It then appears that r^'

and Tj' are also a pair of conjugate semi-diameters of that

ellipse. They are rotated in the ellipse from r^^ toward r^, by

a sector of which the area is to the area of the whole ellipse

as g- is to 2 ir. Such a change of position has been called an

elliptic rotation through the sector q.

The ellipse of which Tj and t^ are a pair of conjugate semi-

diameters is called the directional ellipse of the bivector r.

When the bivector has a real direction the directional ellipse

reduces to a right line in that direction. When the bivector

has a complex direction the ellipse is a true ellipse. The

angular direction from the real part rj to the complex part t^

is considered as the positive direction in the directional

ellipse, and must always be known. If the real and imagi-

nary parts of a bivector turn in the positive direction in the

ellipse they are said to be advanced ; if in the negative direc-

tion they are said to be retarded. Hence multiplication of a
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bivectar ly a eydia factor retards it in its directional ellipse ly

a sector equal to the angle of the eycUe factor.

It is always possible to multiply a biveetor lay sttch a cyclic

factor that the real and imaginary parts become coincident

with the axes of the ellipse and are perpendicular.

r = (cos q + i sin 3) (a + i b) where a • b = 0.

To accomplish the reduction proceed as follows : Form

r . r =^ (cos 2 2' + i sin 2 2') (a + » b) • (a + i b).

If a . b = 0,

r • r = (cos 2 y + i sin 2 2') (a • a — b • b).

Let r • r = a + « 5,

and tan 2 tf = -.

a

"With tMs ralue of q the axes of the directional ellipse are

given by the equation

a 4- i b = (cos g — i sin 2) r.

In case the real and imaginary parts a and b of a bireotor

are equal in magnitude and perpendicular in direction botii ft

and b in the expression for r • r vanish. Hence the angle

2 is indeterminate. The directional ellipse is a circle* A
biveetor whose directional ellipse is a circle i» called a eireu^

lar Uveetor, The necessary and sufficient condition that a

non-vanishing biveetor r be circular is

r . r = 0, r circular.

If t — a? i + 2/ j 4 « k,

r . r = *!2 + 2/2 + s2 ^ 0.

The condition r • r = 0, which for real vectors implies r = 0,

is not sufficient to ensure the> vanishing of a biveetos. The
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bivector is circular, not necessarily zero. The condition that

a bivector vanish is that the direct product of it by its con-

jugate vanishes.

(J\ + * r2) ' (Ji-i ^2) = Ti . rj + rj . r2 = 0,

then rj = rg = and r = 0.

In case the bivector has a real direction it becomes equal to

its conjugate and their product becomes equal to r • r.

161.J The condition that two bivectors be parallel is that

one is the product of the other by a scalar factor. Any bi-

scalar factor may be expressed as the product of a cyclic

factor and a positive scalar, the modulus of the biscalar. If

two bivectors differ by only a cyclic factor their directional

ellipses are the same. Hence two parallel vectors have their

directional ellipse similar and similarly placed— the ratio of

similitude being the modulus of the biscalar. It is evident

that any two circular bivectors whose planes coincide are

parallel. A circular vector and a non-circular vector cannot

be parallel.

The condition that two bivectors be perpendicular

is r • s = 0,

or
'^i

' ^1 — Tg • Sg = Pj • S2 + Tj • Sj := 0.

Consider first the case in which the planes of the bivectors

coincide. Let

r = a (r^ -f- 4 r^, s = 6 (s^ + i Sg).

The scalars a and h are biscalars. r^ may be chosen perpen-

dicular to Tj, and Si may be taken in the direction of t^. The

condition r • s .= then gives

Tg • 83 = and ij • S2 + Tg • Sj = 0.

28



434 VECTOR ANALYSIS

The first equation shows that t^ and s^ are perpendicular and

hence Sj and Sj are perpendicular. Moreover, the second

shows that the angular directions from r^ to t^ and from Sj to

Sg are the same, and that the axes of the directional ellipses

of r and s are proportional.

Hence the conditions for perpendicularity of two bivectors

whose planes coincide are that their directional ellipses are

similar, the angular direction in both is the same, and the

major axes of the ellipses are perpendicular.^ If both vectors

have real directions the conditions degenerate into the per-

pendicularity of those directions. The conditions therefore

hold for real as well as for imaginary vectors.

Let r and s be two perpendicular bivectors the planes of

which do not coincide. Resolve r^ and t^ each into two com-

ponents respectively parallel and perpendicular to the plane

of s. The components perpendicular to that plane contribute

nothing to the value of r • s. Hence the components of r^

and tj parallel to the plane of s form a bivector r' which is

perpendicular to s. To this bivector and s the conditions

stated above apply. The directional ellipse of the bivector r'

is evidently the projection of the directional ellipse of r upon

the plane of s.

Hence, if two bivectors are perpendicular the directional

ellipse of either bivector and the directional ellipse of the

other projected upon the plane of that one are similar, have

the same angular direction, and have their major axes per-

pendicular.

162.] Consider a bivector of the type

D = Ae, *'"'-"" (9)

where A and m are bivectors and w is a biscalar. r is the

position vector of a point in space. It is therefore to be con-

1 It should be noted that the condition of perpendicularity of major axes is not

the same as the condition of perpendicularity of real parts and imaginary parts.
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sidered as real, t is the scalar variable time and is also to

be considered as real. Let

A = Aj + i Ag,

m = nij + 4 m^,

n = n-^ + in2,

D = (Aj + i Aj) e*'"'i"'+"°!""'-''»'-<''2')

D = (Ai + i Ag) e—"«•'
e"'' e<c»i"-ni<).

^^jq)

As has been seen before, the factor (Aj + i Ag) «*'°' """"'"

represents a train of plane waves of elliptic harmonic vibra-

tions. The vibrations take place in the plane of Aj and A2,

in an ellipse of which Aj and A^ are conjugate semi-diam-

eters. The displacement of the vibrating point from the

center of the ellipse is given by the real part of the factor.

The velocity of the point reversed in direction and divided

by Wj is given by the pure imaginary part. The wave ad-

vances in the direction m^. The other factors in the expres-

sion are dampers. The factor e~'^"' is a damper in the

direction m^. As the wave proceeds in the direction ma it

dies away. The factor e"^' is a damper in time. If n^ is

negative the wave dies away as time goes on. If n^ is posi-

tive the wave increases in energy as time increases. The

presence (for unlimited time) of any such factor in an ex-

pression which represents an actual vibration is clearly inad-

missible. It contradicts the law of conservation of energy.

In any physical vibration of a conservative system n^ is ne-

cessarily negative or zero.

The general expression (9) therefore represents a train of

plane waves of elliptic harmonic vibrations damped in a

definite direction and in time. Two such waves may be com-

pounded by adding the bivectors which represent them. If

the exponent m > t — nt is the same for both the resulting

train of waves advances in the same direction and has the
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same period and wave-length as the individual waves. The

vibrations, however, take place in a different ellipse. If the

waves are
^g.(m.r-n*) and B g"" ' "-""

the resultant is (A + B) e"" •
"-""•

By combining two trains of waves which advance in opposite

directions but which are in other respects equal a system of

stationary waves is obtained.

j^ g— m^.i gi{mi.T— nt) , ^ g— mj • r gi (— mj • r— n() __

Ae-'^-' e-'"' (e""'" +e~'""-'') = 2Acos {m^ • r) e~'^-'' e"""

The theory of bivectors and their applications will not b*^

carried further. The object in entering at all upon this very

short and condensed discussion of bivectors was first to show

the reader how the simple idea of a direction has to give way

to the more complicated but no less useful idea of a directionc

ellipse when the generalization from real to imaginary vectcrt

is made, and second to set forth the manner in which a single

bivector D may be employed to represent a train of plane

waves of elliptic harmonic vibrations. This application of b' -

vectors may be used to give the Theory of Light a wonderfull;

simple and elegant treatment.^

1 Such use of bivectors .is made by Professor Gibbs in his course of lectures on
" The Electromagnetic Theory of Light," delivered biannually at Yale tTuiversity.

Bivectors were not used in the second part of this chapter, because in the opinion

of the present author they possess no essential advantage over real vectors until

the more advanced parts of the theory, rotation of the plane of polarization by

magnets and crystals, total and metallic reflection, etc., are reached?










